Skepticism about science and medicine

In search of disinterested science

Archive for the ‘resistance to discovery’ Category

Intellectual charlatanry: TED doesn’t know how to distinguish between good science and bad science

Posted by Henry Bauer on 2018/08/07

On the Mad in America website I came across “TED betrays its own brand by flagging nutrition talk”. After following a number of links, I was led to the guidelines that the TED organization prescribes for talks eligible to be described as “TEDx” (“TEDx is an international community that organizes TED-style events anywhere and everywhere — celebrating locally-driven ideas and elevating them to a global stage. TEDx events are produced independently of TED conferences, each event curates speakers on their own, but based on TED’s format and rules.”).

Sadly, TED’s guidelines for what constitutes good science reveal abysmal ignorance:

Claims made using scientific language should:

  • Be testable experimentally.
    That would exclude all the science that relies only on observation because experimenting is not possible: astronomy, cosmology, geology, parts of biology, almost everything to do with human beings…. String theory, which presently dominates theoretical physics, is not testable experimentally, nor is cosmology’s consensus that “the universe” originated in a Big Bang about 13 billion years ago. And so on, The theory of evolution by natural selection is not testable experimentally.
    Much of what is nowadays regarded as “accepted science” or “settled science   consists just of reasonably solid observations supporting more or less plausible inductive explanations.
  • Have been published in a peer-reviewed journal (beware… there are some dodgy journals out there that seem credible, but aren’t. For further reading, here’s an article on the topic).
    The cited article does not begin to cover this issue. Peer review is not the guarantor of reliability that it is so widely taken to be (pp. 106-9 in “Science Is Not What You Think — how it has changed, why we can’t trust it, how it can be fixed”).
    Even what is published in highly regarded, long-established, peer-reviewed journals may be quite wrong. Perhaps 90% of the primary research literature in physics later turns out to have been faulty or flawed in some way (John Ziman, “Reliable Knowledge”, Cambridge University Press, 1978, p. 40). As an editor of The Lancet (Richard Horton) once put it, “Peer review … is simply a way to collect opinions from experts in the field. Peer review tells us about the acceptability, not the credibility, of a new finding”
    .
    What peer review does very effectively is to entrench whatever the prevailing majority consensus happens to be; but the history of science is perfectly clear that any majority consensus may have a very limited useful life before it is superseded.
  • Be based on theories that are also considered credible by experts in the field.
    Thereby entrenching the possibly wrong contemporary consensus.
  • Be backed up by experiments that have generated enough data to convince other experts of its legitimacy.
    Nonsense, see detailed comments above.
  • Have proponents who are secure enough to acknowledge areas of doubt and need for further investigation.
    Proponents of a contemporary consensus are rarely so “scientific”.
  • Not fly in the face of the broad existing body of scientific knowledge.
    Again, thereby entrenching the possibly wrong contemporary consensus.
  • Be presented by a speaker who works for a university and/or has a phD [sic] or other bona fide high level scientific qualification.
    When we founded the Society for Scientific Exploration (which Wikipedia and other science-ignorant sources describe as a “fringe science” organization) it was made a requirement for full membership that applicants have a PhD or equivalent credentials. I found that rather funny, since anyone even slightly acquainted with academe or people with PhDs knows that these are absolutely no warranty of intelligence or competence or lack of kookiness.
  • Show clear respect for the scientific method and scientific thinking generally.
    “The scientific method” is a myth (“Scientific Literacy and Myth of the Scientific Method”, University of Illinois Press, 1992), and “scientific thinking” is no more easily defined than “the method” 

    Claims made using scientific language should not:

  • Be so obscure or mysterious as to be untestable
    See above re testable
  • Be considered ridiculous by credible scientists in the field
    Once more, relies on current consensus
  • Be based on experiments that can not be reproduced by others.
    For misguided views that “reproducibility” is a necessary criterion and is applied in practice, see pp. 53ff. in “Science Is Not What You Think”, book cited above
  • Be based on data that do not convincingly corroborate the experimenter’s theoretical claims.
    “Convincing” is in the eyes of the beholder
  • Come from overconfident fringe experts.
    Mainstream experts often suffer from overconfidence, and labeling someone a “fringe expert” is no easy matter
  • Use over-simplified interpretations of legitimate studies
    Simplification is a necessity in teaching and in talking to general audiences; what is “over” simplified is again in the eyes of the beholder

—————————————————————-

My detailed comments should make plain that whoever drew up these guidelines was insufficiently knowledgeable about science. That’s rather serious for an organization that says:
“Science is a big part of the TED universe, and it’s important that TEDx organizers sustain our reputation as a credible forum for sharing ideas that matter. It’s not always easy to distinguish between real science and pseudoscience…”

Indeed it isn’t, see for example Science or Pseudoscience: Magnetic Healing, Psychic Phenomena, and Other Heterodoxies (University of Illinois Press, 2001). It is likely to be impossible for an organization whose guidelines for distinguishing are ignorant rubbish, as above. And so it happened that TED “flagged” a TEDx talk about micronutrients and mental health given by a well-published PhD professor at a very respectable university:

“NOTE FROM TED: We’ve flagged this talk, which was filmed at a TEDx event, because it appears to fall outside TEDx’s curatorial guidelines. There is limited evidence to support the claims made by this speaker. Please do not look to this talk for medical advice.”

For comments on this flagging, see James Moore’s blog post “Julia Rucklidge: Nutrition, Mental Health and TED” which includes an audio of Moore’s interview with Rucklidge in which she describes the flagging (starting at about 18 minutes in the 30-minute interview).

My point here is not, however, just that the flagging was unwarranted. Anyone can learn that easily enough by checking Rucklidge’s publications and following a few other links. My point is to expose TED as practicing charlatanry, falsely claiming expertise it does not possess (“charlatan: a person falsely claiming to have a special knowledge or skill; a fraud, quack, sham, fake, impostor, hoaxer, cheat, deceiver, double-dealer, swindler, fraudster, mountebank; (informal) phony, shark, con man, con artist, scam artist, flimflammer, bunco artist, shyster, snake oil salesman; (dated) confidence man/woman”).

Not only charlatanry: sheer incompetence, and arrogant incompetence at that. Rucklidge’s TEDx talk was flagged by TED without notifying Rucklidge or the organizers of her talk. When Rucklidge learned of this, she wanted to find out the reason for the flagging — but has been unable to get any pertinent information from TED! However, TED did eventually modify the text of its flag, to:

“NOTE FROM TED: We’ve flagged this talk, which was filmed at a TEDx event, because it appears to fall outside TEDx’s curatorial guidelines. Given that the intersection of nutrition and mental health is an emerging field of study with limited conclusive evidence, please consult with a mental health professional and do not look to this talk for medical advice.” (https://www.youtube.com/watch?v=3dqXHHCc5lA)

This still impugns Rucklidge’s reputation as a legitimate, credible scientist by claiming it is “outside TEDx’s curatorial guidelines”. That is an outrage; and no less an outrage that TED flags a talk without consulting its author and its sponsor, something that decency as well as plain common sense would dictate.

The only obvious reason for anyone to object to Rucklidge’s talk and work is that she points out that presently used psychiatric drugs do not work for some significant proportion of people who need help; and so mainstream psychiatry and Big Pharma may well feel challenged. But this remains conjecture so long as TED will not explain its actions. Clearly, TED ought to be held accountable; but how?

That question is likely to become more frequent and more pressing as time goes by, because it pertains not only to TED but to an increasing number of ventures on the Internet — Facebook, Twitter, etc., the whole genre nowadays categorized as “social media”.

Perhaps a first necessary step is for the realization to become general and widespread, that “social media” includes TED, TEDx, Wikipedia, and innumerable other sites that offer all sorts of purportedly authoritative, reliable information — dictionary definitions, say — and yet have no evident credentials and are frequently anonymous, offering no contactable individual who could be held accountable for errors or for committing personal libel like that visited on Professor Rucklidge.

In her interview with Moore, Rucklidge mentions the classic case of Semmelweiss as an example of unconventional work that was wrongly disdained by contemporary mainstream experts. Unfortunately, this and the fact of many similar cases are known usually only to historians of science or medicine; for further examples see Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth).

See also my long-ago post, “TED and TEDx reinvent the wheel — and get it all wrong (or, Ignorant punditry about science and pseudo-science)”

Advertisements

Posted in consensus, media flaws, peer review, resistance to discovery, the scientific method, unwarranted dogmatism in science | Tagged: , , , , | Leave a Comment »

Identifying the Loch Ness Monster

Posted by Henry Bauer on 2018/07/01

Thirty years ago, I explained [1] why science would make no effort to search for the creatures popularly known as Loch Ness Monsters or Nessies: the creatures are seen so rarely that any quest relying on a visual encounter with a Nessie, by eyesight or by photography, would be extremely unlikely to succeed. Scientists cannot sustain a career unless they obtain useful results; at Loch Ness they would be engaged in a war of attrition against the laws of chance, as Adrian Shine once put it. So I have not expected in my lifetime to learn what these creatures really are. Yet now it seems that we will find it out within about a year.

The breakthrough comes from the approach known as “eDNA”, environmental DNA.

“[L]iving things leave behind skin, hair, feathers, poo, bark, pollen and spores as part of their day-to-day activities. These traces result in a potpourri of organic material in our soil and water from which DNA can be extracted and sequenced. Our aim is to produce a census of life in Loch Ness and to establish if there is any scientific basis for the centuries-old monster legend” [2].

It seems incredible, or perhaps magical, but the technique seems to have extraordinary capabilities: “From about a litre or two of water here in Dunedin, we can detect very easily over 150 different species that are present in the inner harbour or the outer harbour” [3].

At Loch Ness, Gemmell’s team “collected 259 water samples from various parts of the loch, including its chilly depths, more than 200 metres down” [2]; so there are good grounds for Nessie believers like myself to be very hopeful that by early in 2019 we will at last know what sort of creature Nessie is.

A common opinion favors something related to the plesiosaurs which supposedly died out roughly 60 million years ago, so presumably authentic plesiosaur DNA is not available for comparison; but snakes and turtles are close relatives in the tree of life with presumably some significant similarities in DNA.

My own best guess, in fact my prediction for what will be found, is that DNA will suggest that Nessies are related to plesiosaurs much as are leatherback turtles, which have been seen at times in the cold waters around Scotland.

Unfortunately, eDNA is not foolproof: “It may be that there is no monster, but we can’t prove that … unfortunately it’s very difficult to prove a negative: the absence of evidence is not evidence of absence. So it might be that if there was a monster, we just didn’t sample water anywhere near where it had been over the last week or so or there may be other explanations” [4].

So we believers have a ready excuse if no marine reptilian DNA turns up. It’s actually a bit worrying if eDNA requires that the organic stuff had been shed within a week or so and somewhere near where the water was sampled — it’s generally agreed that there cannot be more than a couple of dozen Nessies at any given time, and the Loch is about 20 miles long and a mile wide and as deep as nearly 800 feet in some places. That’s why encounters are so rare. Sonar data also suggest that Nessies spend much time at the bottom; and some speculation about physiology and lifestyle suggests significant periods of inactivity.

Still, my hope is that it will be the contemporary doubters, the Nessie denialists, who will need to grasp at straws to find ways to explain away the presence of DNA from some sort of marine reptile. Turtles around the streams that flow into the Loch will be suggested, and much more as well — self-styled skeptics who can maintain that the large, rapidly-moving hump filmed by Tim Dinsdale was actually a boat can surely come up with other absurdly far-fetched suggestions.
We vindicated believers, on the other hand, will move on to point to larger lessons to be drawn from the many decades during which official science managed to ignore or dismiss the staggering amount of evidence: the Dinsdale film, the Rines underwater photos, the innumerable sonar contacts, and the thousands of eyewitness reports.
For a summary of all that evidence and links and references to further detail, see my Loch Ness web-page “Genuine facts about ‘Nessie’, the Loch Ness ‘Monster’”.

—————————————————————

[1]    The Enigma of Loch Ness: Making Sense of a Mystery, University of Illinois Press 1986; re-issued by Wipf & Stock, 2012
[2]    “Monster hunt: using environmental DNA to survey life in Loch Ness”, by Neil Gemmell (Professor of Reproduction and Genomics, University of Otago, New Zealand; 26 June 2018
[3]    Toby Manhire, “In search of the Loch Ness Monster’s DNA – and science people give a damn about”
[4]   “Scholar reveals details of plan on hunt for Loch Ness Monster’s DNA”

Posted in resistance to discovery, science is not truth, scientific culture, unwarranted dogmatism in science | Tagged: , , | 2 Comments »

Who guards the guardians? Who guards science?

Posted by Henry Bauer on 2018/06/24

Quis custodiet ipsos custodes? This quotation attributed to Juvenal describes the inescapable dilemma as to how societies can be governed .

Today’s guardian of reliable knowledge is science. It is the acknowledged authority on the natural world, on what exists in the world and on how those things behave. Most governments accept as reliable, as true for all practical purposes, whatever the current scientific consensus is: on matters of health, the environment, the solar system, the universe. The mass media, too, accept that scientific consensus; and that largely determines what the general public believes, “what everyone knows”.

Nowadays in that category of “what everyone knows” there are literally innumerable things; among them that the universe began with a Big Bang; that ghosts and Loch Ness Monsters do not exist; that HIV causes AIDS; that hypertension causes heart attacks and strokes; that carbon dioxide released by burning fossil fuels is causing climate change and bringing more frequent and more extreme and more damaging events like hurricanes; etc., etc.

But what guards against the scientific consensus being wrong?

Nothing and nobody.

That really matters, because the history of science is crystal clear that contemporary science, the contemporary scientific consensus, has almost invariably been wrong until further progress superseded and replaced it.

That steady improvement over the centuries gave rise to a comforting shibboleth, that “science is self-correcting”. At any given moment, however, the scientific consensus stands possibly uncorrected and awaiting future “self”-correction. One cannot justifiably assert, therefore, that any contemporary scientific consensus is known to be unquestionably true. It is not known with absolute certainty that the universe began with a Big Bang; that ghosts and Loch Ness Monsters do not exist; that HIV causes AIDS; that hypertension causes heart attacks and strokes; that carbon dioxide released by burning fossil fuels is causing climate change and bringing more frequent and more extreme and more damaging events like hurricanes; etc., etc.

Nevertheless, contemporary society treats these and other contemporary scientific consensuses as true. This amounts to what President Eisenhower warned against: that “public policy could itself become the captive of a scientific-technological elite” [1]. Science can indeed mislead public policy, as when tens of thousands of Americans were forcibly sterilized in the misguided belief that this improved the genetic stock [2]. Science is far from automatically or immediately self-correcting [3].

I’ve wondered how Eisenhower could have been so prescient in 1960, because the conditions that conduce to public policies being misled by science were then just beginning to become prominent: the massive governmental stimulation of scientific activity that has produced today’s dysfunctional hyper-competitiveness, with far too many would-be researchers competing for far too few reliably permanent positions and far too little support for the resources that modern research needs [4]. Moreover, the scientific consensus is guarded not only by the scientists who generated it, powerful societal institutions are vested in the correctness of the scientific consensus [4]: It is virtually inconceivable, for instance, that official bodies like the National Institutes of Health, the Food and Drug Administration, the Centers for Disease Control & Prevention, the World Health Organization, and the like would admit to error of the views that they have promulgated; try to imagine, for example, how it could ever be officially admitted that HIV does not cause AIDS [5].

SUGGESTION TO THE READER:
Reflect on how you formed an opinion about — Big-Bang theory? Loch Ness Monsters? Ghosts? Climate change? … etc. etc. Almost always it will not have been by looking into the evidence but rather by trusting someone’s assertion.

Who has the interest, time, and energy to study all those things? Obviously we must take our beliefs on many matters from trusted authorities; and for a couple of centuries the scientific consensus has been a better guide than most others. But that is no longer the case. The circumstances of 21st-century science mean that society needs guardians to check that what the scientific consensus recommends for public policy corresponds to the best available evidence. On many issues, a minority of experts differs from the scientific consensus, and it would be valuable to have something like a Science Court to assess the arguments and evidence pro and con [6].

I’ve had the luxury of being able to look into quite a few topics because that was appropriate to the second phase of my academic career, in Science & Technology Studies (STS). Through having made a specialty of studying unorthodoxy in science, I stumbled on copious examples of the scientific consensus treating, in recent times, competent minority opinions well within the scientific community with the same disdain, or even worse, as that traditionally directed towards would-be science, fringe science — Loch Ness Monsters, ghosts, UFOS, and the like.

In Dogmatism in Science and Medicine [7], I pointed to the evidence that the contemporary scientific consensus is wrong about Big-Bang theory, global warming and climate change, HIV/AIDS, extinction of the dinosaurs, and more, including what modern medicine says about prescription drugs. The failings of the scientific consensus in modern medicine have been detailed recently by Richard Harris [8] as well as in many works of the last several decades [9]. That the scientific consensus is wrong about HIV and AIDS is documented more fully in The Origin, Persistence and Failings of HIV/AIDS Theory (McFarland, 2007). Why science has become less believable is discussed in [4], which also describes many misconceptions about science and about statistics, the latter bearing a large part of the blame for what’s wrong with today’s medical practices.

But my favorite obsession over where the scientific consensus is wrong remains the existence of Loch Ness “Monsters”, Nessies. It was my continuing curiosity about this that led to my career change from chemistry to STS, which brought many unforeseeable and beneficial side-effects. My 1986 book, The Enigma of Loch Ness: Making Sense of a Mystery [10], showed how the then-available evidence could be interpreted to support belief in the reality of Nessies but could also be plausibly enlisted to reject the reality of Nessies. However, the book’s chief purpose was to explain why seeking to “discover” Nessies was not a sensible task for organized science.

Now in 2018 quite proper science, in the guise of “environmental DNA”, has offered a good chance that my belief in the reality of Loch Ness “Monsters” may be vindicated within a year or so by mainstream science. I plan to say more about that soon.

—————————————————————–

[1]  Farewell Address to the Nation, 17 January 1961
[2]  “Bauer: Could science mislead public policy?”
[3]  Science is NOT self-correcting (How science has changed — VII)
[4]  Science Is Not What You Think — how it has changed,
why we can’t trust it, how it can be fixed
(McFarland, 2017)
[5]   “OFFICIAL!   HIV does not cause AIDS!”
[6]    For a detailed history and analysis of the concept of a Science Court,
see chapter 12 in [4]
[7]    Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth (McFarland, 2012)
[8]    Richard Harris, Rigor Mortis — How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Billions (Basic Books, 2017)
[9]    What’s Wrong with Present-Day Medicine, a bibliography last updated 17 April 2017
[10]  The Enigma of Loch Ness: Making Sense of a Mystery, University of Illinois Press, 1986;
in Cassette Book format, RC 25592, narrated by Richard Dorf, 1988;
U.K. edition, Stirling (Scotland): Johnston & Bacon 1991;
re-issued by Wipf & Stock, 2012

Posted in conflicts of interest, consensus, funding research, global warming, media flaws, medical practices, peer review, politics and science, prescription drugs, resistance to discovery, science is not truth, science policy, unwarranted dogmatism in science | Tagged: | 3 Comments »

Science is NOT self-correcting (How science has changed — VII)

Posted by Henry Bauer on 2018/05/06

One of the common and popular shibboleths about science is that it is self-correcting. That implies happening inevitably and automatically. But despite the existence of innumerable scientific organizations and institutions, there is no overarching system or set of protocols or hierarchy that governs all scientific activity. Nothing about scientific activity is automatic or inevitable.

The illusion of self-correction may trace back to the fact that science has surely progressed over time, to better and deeper understanding of how the world works, superseding and rejecting mistakes and misunderstandings. However, this correcting of earlier mis-steps was never automatic; more important, it was never a sure thing. Barber [1] surveyed the long history of hegemonic scientific consensuses vigorously resisting correction. Stent [2] described the phenomenon of “premature discovery” whereby some hegemonic scientific consensuses have forestalled correction for decades — about 40 years with Mendel’s quantitative insight into heredity, about half a century with Wegener’s insight into continental movements.

Barber and Stent dealt with the more-or-less classic modern science that subsisted up until about the middle of the 20th century, the sort of science whose ethos could be fairly adequately described by the Mertonian Norms [3]; a cottage industry of independent, voluntarily cooperating, largely disinterested ivory-tower intellectual entrepreneurs in which science was free to do its own thing, seeking truths about the natural world. Individuals were free to publish their results with little or no hindrance. There were plenty of journals and plenty of journal space, and editors were keen to receive contributions: “From the mid-1800s, there was more journal space than there were articles . . . . assistant editors [had the] . . . primary responsibility . . . to elicit articles and reviews to fill the pages of the publication” [4].

The onus for ensuring that published work was sound rested on the authors, there was not the contemporary gauntlet of “peer reviewers” to run: “for most of the history of scientific journals, it has been editors — not referees — who have been the key decision-makers and gatekeepers. . . . It was only in the late 20th century that refereeing was rebranded as ‘peer review’ and acquired (or reacquired) its modern connotation of proof beyond reasonable doubt. . . . A Google ngram — which charts yearly frequencies of any phrase in printed documents — makes the point starkly visible: it was in the 1970s that the term ‘peer review’ became widely used in English. [We] . . . do not yet know enough about why the post-war expansion of scientific research . . . led to . . . ‘peer review’ [coming] . . . to dominate the evaluation of scholarly research” [5].

Nowadays, by contrast, where publication makes a career and lack of publication means career failure, journals are swamped with submissions at the same time as costs have exploded and libraries are hard pressed to satisfy their customers’ wishes for everything that gets published. Journals are now ranked in prestige by how small a proportion of submissions they accept, and “peer review” is pervaded by conflicts of interest. The overall consequence is that the “leading journals” hew to the current “scientific consensus” so that unorthodoxies, radical novelties, minority views find it difficult to get published. How extreme can be the efforts of “the consensus” to suppress dissent has been profusely documented on a number of topics, including the very publicly visible issues of HIV/AIDS and climate change [6, 7, 8].

Where the consensus happens to be in need of “self-correction”, in other words, today’s circumstances within the scientific community work against any automatic or easy or quick correction.

That situation is greatly exacerbated by the fact that correction nowadays is no simple revising of views within the scientific community. “Science” has become so entwined with matters of great public concern that particular beliefs about certain scientific issues have large groups of influential supporters outside the scientific community who seek actively to suppress dissent from “the consensus”; over HIV/AIDS, those groupies who abet the consensus include the pharmaceutical industry and activist organizations largely supported by drug companies; over climate change, environmentalists have seized on “carbon emissions” as a weapon in their fight for sustainability and stewardship of nature.

Science is not inevitably or automatically self-correcting. Its official agencies, such as the Food and Drug Administration, the Centers for Disease Control & Prevention, the National Institutes of Health, the World Health Organization, etc., are captives of the contemporary scientific consensus and thereby incapable of drawing on the insights offered by minority experts, which is also the case with the peer-review system and the professional journals.

Even when outright fraud or demonstrated honest mistakes have been published, there is no way to ensure that the whole scientific community becomes aware of subsequent corrections or retractions, so errors may continue to be cited as though they were reliable scientific knowledge. Even the journals regarded as the most reliable (e.g. Nature journals, Cell, Proceedings of the National Academy) make it quite difficult for retractions or corrections to be published [9], and even complete retraction seemed to reduce later citation by only about one-third, very far from “self-correcting” the whole corpus of science [10].

 

==========================================

[1]    Bernard Barber, “Resistance by scientists to scientific discovery”, Science, 134 (1961) 596–602

[2]    Gunther Stent, “Prematurity and uniqueness in scientific discovery”, Scientific American, December 1972, 84–93

[3]    How science has changed — II. Standards of Truth and of Behavior

[4]    Ray Spier, “The history of the peer-review process”, TRENDS in Biotechnology, 20 (2002) 357-8

[5]    Aileen Fyfe, “Peer review: not as old as you might think”, 25 June 2015

[6]    Henry H. Bauer, The Origin, Persistence and Failings of HIV/AIDS Theory, McFarland, 2007

[7]    Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

[8]    Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017)

[9]    “Science is self-correcting” (ed.) Lab Times, 2012. #1: 3

[10]  Mark P. Pfeifer & Gwendolyn L. Snodgrass, “The continued use of retracted, invalid scientific literature”, JAMA, 263 (1990) 1420-3)

 

Posted in conflicts of interest, consensus, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture | Tagged: | Leave a Comment »

How science has changed — VI. The influences of groups

Posted by Henry Bauer on 2018/04/26

Popular stereotypes of scientists picture them as strikingly individual, whether admirably so (Galileo, Darwin, Einstein) or the opposite (Dr. Frankenstein and other mad or evil scientists [1]). That is one of the most significant ways in which the folklore about science differs from today’s reality: Science nowadays is by and large a group activity, and that has many far-reaching corollaries. This is not to deny that scientists see themselves as individuals and act as individuals, but they are also influenced to varying degrees by group memberships and associated loyalties, and that can interfere with truth-seeking.

Memberships in groups and the associated loyalties is a common human experience. First comes the family group; then there is the extended family or clan, and perhaps subgroups of the clan. Other groups cut across different lines, defined by religion, by ethnicity, by nationality; and also, very much pertinent to the circumstances of science, there are groups associated with the way in which we earn a living; we are influenced by our memberships in professional guilds or trade unions.

Under some circumstances it becomes necessary to set priorities with respect to loyalty to the various groups to which we belong. In most circumstances the highest priority is on loyalty to the family, though some individuals have placed a higher priority on religion or some other ideology. Among professional researchers, the most important thing is the current research project and the associated paradigm and scientific consensus: going with this group is the way to further a career whereas dissenting from the group can spell the blighting of a career.

The groups to which scientists belong is one of the most significant aspects of scientific activity, and that has changed fundamentally in recent times, since about WWII.
In the earlier stages of modern science, what we by hindsight describe as scientists were individuals who, for a variety of reasons, were interested in learning to understand the way the natural world works. One of the most crucial foundations of modern science came when groups of such inquiring minds got together, at first informally but soon formally; the Royal Society of London is generally cited as iconic. Those people came together explicitly and solely to share and discuss their findings and their interpretations. At that stage, scientists belonged effectively to just one science-related group, concerned with seeking true understanding of the workings of the world. Since this was a voluntary activity engaged in by amateurs, in other words by people who were not deriving a living or profit from this activity, these early pre-scientists were not much hindered from practicing loyalty simply to truth-seeking; it did not conflict with or interfere with their loyalties to their families or to their religion or to their other social groups.

As the numbers of proto-scientists grew, their associations were influenced by geography and therefore by nationality, so there came occasions when loyalty to truth-seeking was interfered with by questions of who should get credit for particular advances and discoveries. Even in retrospect, British and French sources may differ over whether the calculations for the discovery of Neptune should be credited most to the English John Couch Adams or the French Urbain Le Verrier — and German sources might assert that the first physical observation of the planet was made by Johann Gottfried Galle; again, British and German sources may still differ by hindsight over whether Isaac Newton or Gottfried Wilhelm Leibniz invented the calculus.

Still, for the first two or three centuries of modern science, the explicit ideal or ethos of science was the unfettered pursuit of genuine truth about how the world works. Then, in the 1930s in Nazi Germany and decades later in the Soviet Union, authoritarian regimes insisted that science had to bend to ideology. In Nazi Germany, scientists had to abstain from relativity and other so-called “Jewish” science; in the Soviet Union, chemists had to abstain from the rest of the world’s theories about chemical combination, and biologists had to abstain from what biologists everywhere else knew about evolution. In democratic societies, a few individual scientists were disloyal to their own nations in sharing secrets with scientists in unfriendly other nations, sometimes giving as reason or excuse their overarching loyalty to science, which should not be subject to national boundaries.

By and large, then, up to about the time of WWII, scientific activity was not unlike how Merton had described it [2], which remains the view of it that most people seem still to have of it today: Scientists as truth-seeking individuals, smarter and more knowledgeable than ordinary people, dedicated to science and unaffected by crass self-interest or by conflicts of interest.

That view does not describe today’s reality, as pointed out in earlier posts in this series [2, 3].   The present essay discusses the consequences of the fact that scientists are anything but isolated individuals freely pursuing truth; rather, they are ordinary human beings subject to the pressures of belonging to a variety of groups. Under those conditions, the search for truth can be hindered and distorted.

Chemists (say) admittedly do work individually toward a particular goal, but that goal is not freely self-selected: either it is set by an employer or by a source of funding that considered the proposed work and decided to support it. Quite often, chemists nowadays work in teams, with different individuals focusing on minor specific aspects of some overall project. They are aware of and accommodate in various ways other chemists who happen to be working toward the same or similar goals, be it in the same institution or elsewhere; and they also share some group interests with other chemists in their own institution who may be working on other projects. Chemists everywhere share group interests through national and international organizations and publications. Beyond that, chemists share with biologists, biochemists, physicists and others the group interest of being scientists, having a professional as well as personal interest in the overall prestige and status of science as a whole in the wider society — at the same time as chemists regard their discipline as just a bit “better” than the other sciences, it is “the central science” because it builds on physics and biologists need it; whereas physicists have long known that their discipline is the most fundamental, “the queen of the sciences”, without which there could not be a chemistry or any other science; and so on — biologists know that their field matters much more to human societies than the physical sciences since it is the basis of understanding living things and is indispensable for effective medicine.

So scientists differ among themselves in a number of ways. All feel loyalty to science by comparison to other human endeavors, but especial loyalty to their own discipline; and within that to their particular specialty — among chemists, to analytical or inorganic or organic or physical chemistry; and within each of those to experimental approaches or to theoretical ones. Ultimately, all researchers are obsessed with and loyal to the very specific work they are engaged in every day, and that may be intensely specialized.

For example, researchers working to perfect computer models to mimic global temperatures and climate do just that; they do not have time to work themselves at estimating past temperatures by, for instance, doing isotope analyses of sea-shells. Since such ultra-specialization is necessary, researchers need to rely on and trust those who are working in related areas. So those who are computer-modeling climate take on trust what they are told by geologists about historical temperature and climate changes, and what the meteorologists can tell them about relatively recent weather and climate, and what physicists tell them about heat exchange and the absorption of heat by different materials, and so on.

With all that, despite the fact that research is done within highly organized and even bureaucratic environments, there is actually no overarching authority to monitor and assess what is happening in science, let alone to ensure that things are being done appropriately. In particular, there is no mechanism for deciding that any given research project may have gone off the rails in the sense of drawing unwarranted conclusions or ignoring significant evidence. There is no mechanism to ensure that proper consideration is being given to the views of all competent and informed scientists working on a particular topic.

A consequence is that on quite a range of matters, the so-called scientific consensus, the view accepted as valid by society’s conventional wisdom and by the policy makers, may be at actual odds with inescapable evidence. That circumstance has been documented for example as to the Big-Bang theory in cosmology, the mechanism of smell, the cause of Alzheimer’s disease, the cause of the extinction of the dinosaurs, and more [4].

Of course, the scientific consensus was very often wrong on particular matters throughout the era of modern science. Moreover, the scientific consensus defends itself quite vigorously against the mavericks who point out its errors [5], until eventually the contrary evidence becomes so overwhelming that the old views simply have to give away, in what Thomas Kuhn [6] described as a scientific revolution.

Defense of the consensus illustrates how strong the group influence is on the leading voices in the scientific community; indeed, it has been described as Groupthink [7]. The success of careers, the gaining of eminence and leadership roles hinge on being right, in other words being in line with the contemporary consensus; thus admitting to error can be tantamount to loss of prestige and status and destruction of a career. That is why Max Planck, in the early years of the 20th century, observed that “A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it” [8]; a paraphrase popular among those of us who question an established view is that “Science progresses funeral by funeral”.

At the same time as the history of science teaches that any contemporary scientific consensus is quite fallible and may well be wrong, it also records that — up to quite recent times — science has been able to correct itself, albeit it could take quite a long time — several decades in the case of Mendel’s laws of heredity, or Wegener’s continental drift, or about the cause of mad-cow diseases or of gastritis and stomach ulcers.
Unfortunately it seems as though science’s self-correction does not always come in time to forestall society’s policy-makers from making decisions that spell tangible harm to individuals and to societies as a whole, illustrating what President Eisenhower warned against, that “public policy could itself become the captive of a scientific-technological elite” [9].

More about that in future blog posts.

======================================

[1]   Roslynn D. Haynes, From Faust to Strangelove: Representations of the Scientist in Western Literature, Johns Hopkins University Press, 1994; David J. Skal, Screams of Reason: Mad Science and Modern Culture, W. W. Norton, 1998
[2]    How science has changed— II. Standards of Truth and of Behavior
[3]    How science has changed: Who are the scientists?
How science changed — III. DNA: disinterest loses, competition wins
How science changed — IV. Cutthroat competition and outright fraud
[4]    Henry H. Bauer, Dogmatism   in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012
[5]    Bernard Barber, “Resistance by scientists to scientific discovery”, Science, 134 (1961) 596–602
[6]    Thomas S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1970 (2nd ed., enlarged); 1st ed. was 1962)
[7]    I. L. Janis, Victims of Groupthink, 1972; Groupthink, 1982, Houghton Mifflin
[8]    Max Planck, Scientific Autobiography and Other Papers (1949); translated from German by Frank Gaynor, Greenwood Press, 1968
[9]    Dwight D. Eisenhower, Farewell speech, 17 January 1961

Posted in consensus, funding research, media flaws, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, scientism, scientists are human, unwarranted dogmatism in science | Tagged: , | Leave a Comment »

How science has changed — II. Standards of Truth and of Behavior

Posted by Henry Bauer on 2018/04/08

The scientific knowledge inherited from ancient Babylon and Greece and from medieval Islam was gained by individuals or by groups isolated from one another in time as well as geography. Perhaps the most consequential feature of the “modern” science that we date from the 17th-century Scientific Revolution is the global interaction of the people who are doing science, and especially the continuity over time of their collective endeavors.
These interactions among scientists began in quite informal and individual ways. An important step was the formation of academies and societies, among which the Royal Society of London is usually acknowledged to be the earliest (founded 1660) that has remained active up to the present time — though it was not the earliest such institution and even the claim of “longest continually active” has been challenged [1].
Even nowadays, the global community of scientists remains in many ways informal despite the host of scientific organizations and institutions, national and international: the global scientific community is not governed by any formal structure that lays down how science should be done and how scientists should behave.
However, observing the actualities of scientific activity indicates that there had evolved some agreed-on standards generally seen within the community of scientists as proper behavior. Around the time of the Second World War, sociologist Robert Merton described those informal standards, and they came to be known as the “Mertonian Norms” of science [2]. They comprise:

Ø    Communality or communalism (Merton had said “communism”): Science is an activity of the whole scientific community and it is a public good — findings are shared freely and openly.
Ø    Universalism: Knowledge about the natural world is universally valid and applicable. There are no separations or distinctions by nationality or religion race or anything of that sort.
Ø    Disinterestedness: Science is done for the public good and not for personal benefit; scientists seek to be impartial, objective, unbiased, and not self-serving.
Ø    Skepticism: Claims and reported findings are subject to critical appraisal and testing throughout the scientific community before they can be accepted as proper scientific knowledge.

Note that honesty is not mentioned; it was simply taken for granted.
These norms clearly make sense for a cottage industry, as ideal behavior that individuals should aim for; but they are not appropriate for a corporate environment, they cannot guide the behavior of individuals who are part of some hierarchical enterprise.
In the late 1990s, John Ziman [3] discussed the change in scientific activity as it had morphed from the activities of an informal, voluntary collection of individuals seeking to understand how the world works to a highly organized activity with assigned levels of responsibility and authority and where sources of research funding have a say in what gets done, and which often expect to get something useful in return for their investments, something profitable.
The early cottage industry of science had been essentially self-supporting. Much could be done without expensive equipment. People studied what was conveniently at hand, so there was little need for funds to support travel. Interested patrons and local benefactors could provide the small resources needed for occasional meetings and the publication of findings.
Up to about the middle of the 20th century, universities were able to provide the funds needed for basic research in chemistry and biology and physics. The first sign that exceptional resources could be needed had come in the 1920s when Lawrence constructed the first large “atom-smashing machine”; but that and the need for expensive astronomical telescopes remained outliers in the requirements for the support of scientific research overall.
From about the time of the Second World War, however, research going beyond what had already been accomplished began to require ever more expensive and specialized equipment as well as considerable infrastructure: technicians to support the equipment, glass-blowers and secretaries and book-keepers and librarians, and managers of such ancillary staff; so researchers increasingly came to need support beyond that available from individual patrons or universities. Academic research came to rely increasingly on getting grants for specific research projects from public agencies or from wealthy private foundations.
Although those sources of research funds typically claim that they want to support simply “the best science”, their view of what the best science is does not necessarily jibe with the judgments of the individual researchers [4].
At the same time as research in universities was calling on outside sources of funding, an increasing number of industries were setting up their own laboratories for research specifically toward creating and improving their products and services. Such product-specific “R&D” (research and development) sometimes turned up novel basic knowledge, or revealed the need for such fundamentally new understanding. One consequence has been that some really striking scientific advances have come from such famous industrial laboratories as Bell Telephone Laboratories or the Research Laboratory of General Electric. Researchers employed in industry have received a considerable number of Nobel Prizes, often jointly with academics [5].
Under these new circumstances, as Ziman [3] pointed out, the traditional distinction between “applied” research and “pure” or “basic” research lost its meaning.
Ziman rephrased the Mertonian norms as the nice acronym CUDOS, adding the “O” for originality, quite appropriately since within the scientific community credit was and is given to for the most innovative, original contributions; CUDOS, or preferably “kudos”, being the Greek term for acclaim of exceptional accomplishment. By contrast, Ziman proposed for the norms that obtain in a corporate scientific enterprise, be it government or private, the acronym PLACE: Researchers nowadays get their rewards not by adhering to the Mertonian norms but by producing Proprietary findings whose significance may be purely Local rather than universal, the subject of research having been chosen under the Authority of an employer or patron and not by the individual researcher, who is Commissioned to do the work as an Expert employee.

Ziman too did not mention honesty; like Merton he simply took it for granted.
Ziman had made an outstanding career in solid-state physics before, in his middle years, he began to publish, starting in 1968 [6] highly insightful works about how science functions, in particular what makes it reliable. In the late 1960s, it had still been reasonable to take honesty in science for granted; but by the time Ziman published Prometheus Bound, honesty in science could no longer be taken for granted; Ziman had failed to notice some of what was happening in scientific activity. Competition for resources and for career advancement had increased to a quite disturbing extent, presumably the impetus for the increasing frequency with which scientists were found to have cheated in some way. Even published, supposedly peer-reviewed research failed later attempted confirmation in many cases, and all too often it was revealed as simply false, faked [7].
More about that in a following blog post.

==========================================

[1]    “The Royal Societies [sic] claim to be the oldest is based on the fact that they developed out of a group that started meeting in Gresham College in 1645 but unlike the Leopoldina this group was informal and even ceased to meet for two years between 1658 and 1660” — according to The Renaissance Mathematicus, “It wasn’t the first but…”
[2]    Robert K. Merton, “The normative structure of science” (1942); most readily accessible as pp. 267–78 in The Sociology of Science (ed. N. Storer, University of Chicago Press, 1973) a collection of Merton’s work
[3]    John Ziman, Prometheus Bound: Science in a Dynamic Steady State, Cambridge University Press, 1994
[4]    Richard Muller, awarded a prize by the National Science Foundation, pointed out that truly innovative studies are unlikely to be funded and need to be carried out more or less surreptitiously; and Charles Townes, who developed masers and lasers, testified to his difficulty in getting research support for that ground-breaking work, or even encouragement from some of his distinguished older colleagues —
Richard A. Muller, “Innovation and scientific funding”, Science, 209 (1980) 880–3
Charles Townes, How the Laser Happened: Adventures of a Scientist, Oxford University Press , 1999
[5]    Karina Cummings, “Nobel Science Prizes in industry”;
Nobel Laureates and Research Affiliations
[6]    John Ziman, Public Knowledge (1968); followed by The Force of
Knowledge
(1976); Reliable Knowledge (1978); An Introduction to Science
Studies
(1984); Prometheus Bound (1994); Real Science (2000);
all published by Cambridge University Press
[7]    John P. A. Ioannidis, “Why most published research findings are false”,
         PLoS Medicine, 2 (2005) e124
Daniele Fanelli, “How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data”,
PLoS ONE, 4(#5, 2009): e5738

Posted in conflicts of interest, fraud in medicine, fraud in science, funding research, peer review, resistance to discovery, science is not truth, scientific culture, scientists are human | Tagged: , | Leave a Comment »

Dangerous knowledge IV: The vicious cycle of wrong knowledge

Posted by Henry Bauer on 2018/02/03

Peter Duesberg, universally admired scientist, cancer researcher, and leading virologist, member of the National Academy of Sciences, recipient of a seven-year Outstanding Investigator Grant from the National Institutes of Health, was astounded when the world turned against him because he pointed to the clear fact that HIV had never been proven to cause AIDS and to the strong evidence that, indeed, no retrovirus could behave in the postulated manner.

Frederick Seitz, at one time President of the National Academy of Sciences and for some time President of Rockefeller University, became similarly non grata for pointing out that parts of an official report contradicted one another about whether human activities had been proven to be the prime cause of global warming (“A major deception on global warming”, Wall Street Journal, 12 June 1996).

A group of eminent astronomers and astrophysicists (among them Halton Arp, Hermann Bondi, Amitabha Ghosh, Thomas Gold, Jayant Narlikar) had their letter pointing to flaws in Big-Bang theory rejected by Nature.

These distinguished scientists illustrate (among many other instances involving less prominent scientists) that the scientific establishment routinely refuses to acknowledge evidence that contradicts contemporary theory, even evidence proffered by previously lauded fellow members of the elite establishment.

Society’s dangerous wrong knowledge about science includes the mistaken belief that science hews earnestly to evidence and that peer review — the behavior of scientists — includes considering new evidence as it comes in.

Not so. Refusal to consider disconfirming facts has been documented on a host of topics less prominent than AIDS or global warming: prescription drugs, Alzheimer’s disease, extinction of the dinosaurs, mechanism of smell, human settlement of the Americas, the provenance of Earth’s oil deposits, the nature of ball lightning, the evidence for cold nuclear fusion, the dangers from second-hand tobacco smoke, continental-drift theory, risks from adjuvants and preservatives in vaccines, and many more topics; see for instance Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, Jefferson (NC): McFarland 2012. And of course society’s officialdom, the conventional wisdom, the mass media, all take their cue from the scientific establishment.

The virtually universal dismissal of contradictory evidence stems from the nature of contemporary science and its role in society as the supreme arbiter of knowledge, and from the fact of widespread ignorance about the history of science, as discussed in earlier posts in this series (Dangerous knowledge; Dangerous knowledge II: Wrong knowledge about the history of science; Dangerous knowledge III: Wrong knowledge about science).

The upshot is a vicious cycle. Ignorance of history makes it seem incredible that “science” would ignore evidence, so claims to that effect on any given topic are brushed aside — because it is not known that science has ignored contrary evidence routinely. But that fact can only be recognized after noting the accumulation of individual topics on which this has happened, evidence being ignored. That’s the vicious cycle.

Wrong knowledge about science and the history of science impedes recognizing that evidence is being ignored in any given actual case. Thereby radical progress is nowadays being greatly hindered, and public policies are being misled by flawed interpretations enshrined by the scientific consensus. Society has succumbed to what President Eisenhower warned against (Farewell speech, 17 January 1961) :

in holding scientific research and discovery in respect, as we should,
we must also be alert to the equal and opposite danger
that public policy could itself become the captive
of a scientific-technological elite.

The vigorous defending of established theories and the refusal to consider contradictory evidence means that once theories have been widely enough accepted, they soon become knowledge monopolies, and support for research establishes the contemporary theory as a research cartel(“Science in the 21st Century: Knowledge Monopolies and Research Cartels”).

The presently dysfunctional circumstances have been recognized only by two quite small groups of people:

  1. Observers and critics (historians, philosophers, sociologists of science, scholars of Science & Technology Studies)
  2. Researchers whose own experiences and interests happened to cause them to come across facts that disprove generally accepted ideas — for example Duesberg, Seitz, the astronomers cited above, etc. But these researchers only recognize the unwarranted dismissal of evidence in their own specialty, not that it is a general phenomenon (see my talk, “HIV/AIDS blunder is far from unique in the annals of science and medicine” at the 2009 Oakland Conference of Rethinking AIDS; mov file can be downloaded at http://ra2009.org/program.html, but streaming from there does not work).

Such dissenting researchers find themselves progressively excluded from mainstream discourse, and that exclusion makes it increasingly unlikely that their arguments and documentation will gain attention. Moreover, frustrated by a lack of attention from mainstream entities, dissenters from a scientific consensus find themselves listened to and appreciated increasingly only by people outside the mainstream scientific community to whom the conventional wisdom also pays no attention, for instance the parapsychologists, ufologists, cryptozoologists. Such associations, and the conventional wisdom’s consequent assigning of guilt by association, then entrenches further the vicious cycle of dangerous knowledge that rests on the acceptance of contemporary scientific consensuses as not to be questioned — see chapter 2 in Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth and “Good Company and Bad Company”, pp. 118-9 in Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017).

Posted in conflicts of interest, consensus, denialism, funding research, global warming, media flaws, peer review, resistance to discovery, science is not truth, science policy, scientific culture, scientism, scientists are human, unwarranted dogmatism in science | Tagged: , | 2 Comments »

Dangerous knowledge III: Wrong knowledge about science

Posted by Henry Bauer on 2018/01/29

In the first post of this series (Dangerous knowledge) I pointed to a number of specific topics on which the contemporary scientific consensus is doubtfully in tune with the actual evidence. That disjunction is ignored or judged unimportant both by most researchers and by most observers; and that, I believe, is because the fallibility of science is not common knowledge; which in turn stems from ignorance and wrong knowledge about the history of science and, more or less as a consequence, about science itself.

The conventional wisdom regards science as a thing that is characterized by the scientific method. An earlier post (Dangerous knowledge II: Wrong knowledge about the history of science) mentioned that the scientific method is not a description of how science is done, it was thought up in philosophical speculation about how science could have been so successful, most notably in the couple of centuries following the Scientific Revolution of the 17th century.

Just as damaging as misconceptions about how science is done is the wrong knowledge that science is even a thing that can be described without explicit attention to how scientific activity has changed over time, how the character of the people doing science has changed over time, most drastically since the middle of the 20th century. What has happened since then, since World War II, affords the clearest, most direct understanding of why contemporary official pronouncements about matter of science and medicine need to be treated with similar skepticism as are official pronouncements about matters of economics, say, or politics. As I wrote earlier (Politics, science, and medicine),

In a seriously oversimplified nutshell:

The circumstances of scientific activity have changed, from about pre-WWII to nowadays, from a cottage industry of voluntarily cooperating, independent, largely disinterested ivory-tower intellectual entrepreneurs in which science was free to do its own thing, namely the unfettered seeking of truth about the natural world, to a bureaucratic corporate-industry-government behemoth in which science has been pervasively co-opted by outside interests and is not free to do its own thing because of the pervasive conflicts of interest. Influences and interests outside science now control the choices of research projects and the decisions of what to publish and what not to make public.

 

For a detailed discussion of these changes in scientific activity, see Chapter 1 of Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017); less comprehensive descriptions are in Three Stages of Modern Science  and The Science Bubble.

Official pronouncements are not made primarily to tell the truth for the public good. Statements from politicians are often motivated by the desire to gain favorable attention, as is widely understood. But less widely understood is that official statements from government agencies are also often motivated by the desire to gain favorable attention, to make the case for the importance of the agency (and its Director and other personnel) and the need for its budget to be considered favorably. Press releases from universities and other research institutions have the same ambition. And anything from commercial enterprises is purely self-interested, of course.

The stark corollary is that no commercial or governmental entity, nor any sizable not-for-profit entity, is devoted primarily to the public good and the objective truth. Organizations with the most laudable aims, Public Citizen,  say, or the American Heart Association, etc. etc. etc., are admittedly devoted to doing good things, to serving the public good, but it is according to their own particular definition of the public good, which may not be at all the same as others’ beliefs about what is best for the public, for society as a whole.

Altogether, a useful generalization is that all corporate entities, private or governmental, commercial or non-profit, have a vested self-interest in the status quo, since that represents the circumstances of their raison d’être, their prestige, their support from particular groups in society or from society as a whole.

The hidden rub is that a vested interest in the status quo means defending things as they are, even when objective observers might note that those things need to be modified, superseded, abandoned. Examples from the past are legion and well known: in politics, say, the American involvement in Vietnam and innumerable analogous matters. But not so well known is that unwarranted defense of the status quo is also quite common on medical and scientific issues. The resistance to progress, the failure to correct mis-steps in science and medicine in any timely way, has been the subject of many books and innumerable articles; for selected bibliographies, see Critiques of Contemporary Science and Academe and What’s Wrong with Present-Day Medicine. Note that all these critiques have been effectively ignored to the present day, the flaws and dysfunctions remain as described.

Researchers who find evidence that contradicts the status quo, the established theories, learn the hard way that such facts don’t count. As noted in my above-mentioned book,  science has a love-hate relationship with the facts: they are welcomed before a theory has been established, but after that only if they corroborate the theory; contradictory facts are anathema. Yet researchers never learn that unless they themselves uncover such unwanted evidence; scientists and engineers and doctors are trained to believe that their ventures are essentially evidence-based.

Contributing to the resistance against rethinking established theory is today’s hothouse, overly competitive, rat-race research climate. It is no great exaggeration to say that researchers are so busy applying for grants and contracts and publishing that they have no time to think new thoughts.

Posted in conflicts of interest, consensus, medical practices, peer review, resistance to discovery, science is not truth, scientists are human, the scientific method, unwarranted dogmatism in science | Tagged: | 1 Comment »

Dangerous knowledge II: Wrong knowledge about the history of science

Posted by Henry Bauer on 2018/01/27

Knowledge of history among most people is rarely more than superficial; the history of science is much less known even than is general (political, social) history. Consequently, what many people believe they know about science is typically wrong and dangerously misleading.

General knowledge about history, the conventional wisdom about historical matters, depends on what society as a whole has gleaned from historians, the people who have devoted enormous time and effort to assemble and assess the available evidence about what happened in the past.

Society on the whole does not learn about history from the specialists, the primary research historians. Rather, teachers of general national and world histories in schools and colleges have assembled some sort of whole story from all the specialist bits, perforce taking on trust what the specialist cadres have concluded. The interpretations and conclusions of the primary specialists are filtered and modified by second-level scholars and teachers. So what society as a whole learns about history as a whole is a sort of third-hand impression of what the specialists have concluded.

History is a hugely demanding pursuit. Its mission is so vast that historians have increasingly had to specialize. There are specialist historians of economics, of   mathematics, and of other aspects of human cultures; and there are historians who specialize in particular eras in particular places, say Victorian Britain. Written material still extant is an important resource, of course, but it cannot be taken literally, it has to be evaluated for the author’s identity, and clues as to bias and ignorance. Artefacts provide clues, and various techniques from chemistry and physics help to discover dates or to test putative dates. What further makes doing history so demanding is the need to capture the spirit of a different time and place, an holistic sense of it; on top of which the historian needs a deep, authentic understanding of the particular aspect of society under scrutiny. So doing economic history, for example, calls not only for a good sense of general political history, it requires also a good understanding of the whole subject of economics itself in its various stages of development.

The history of science is a sorely neglected specialty within history. There are History Departments in colleges and universities without a specialist in the history of science — which entails also that many of the people who — at both school and college levels — teach general history or political or social or economic history, or the history of particular eras or places, have never themselves learned much about the history of science, not even as to how it impinges on their own specialty. One reason for the incongruous place — or lack of a place — for the history of science with respect to the discipline of history as a whole is the need for historians to command an authentic understanding of the particular aspect of history that is their special concern. Few if any people whose career ambition was to become historians have the needed familiarity with any science; so a considerable proportion of historians of science are people whose careers began in a science and who later turned to history.

Most of the academic research in the history of science has been carried on in separate Departments of History of Science, or Departments of History and Philosophy of Science, or Departments of History and Sociology of Science, or in the relatively new (founded within the last half a century) Departments of Science & Technology Studies (STS).

Before there were historian specialists in the history of science, some historical aspects were typically mentioned within courses in the sciences. Physicists might hear bits about Galileo, Newton, Einstein. Chemists would be introduced to thought-bites about alchemy, Priestley and oxygen, Haber and nitrogen fixation, atomic theory and the Greeks. Such anecdotes were what filtered into general knowledge about the history of science; and the resulting impressions are grossly misleading. Within science courses, the chief interest is in the contemporary state of known facts and established theories, and historical aspects are mentioned only in so far as they illustrate progress toward ever better understanding, yielding an overall sense that science has been unswervingly progressive and increasingly trustworthy. In other words, science courses judge the past in terms of what the present knows, an approach that the discipline of history recognizes as unwarranted, since the purpose of history is to understand earlier periods fully, to know about the people and events in their own terms, under their own values.

*                   *                   *                  *                    *                   *

How to explain that science, unlike other human ventures, has managed to get better all the time? It must be that there is some “scientific method” that ensures faithful adherence to the realities of Nature. Hence the formulaic “scientific method” taught in schools, and in college courses in the behavioral and social sciences (though not in the natural sciences).

Specialist historians of science, and philosophers and sociologists of science and scholars of Science & Technology Studies all know that science is not done by any such formulaic scientific method, and that the development of modern science owes as much to the precursors and ground-preparers as to such individual geniuses as Newton, Galileo, etc. — Newton, by the way, being so fully aware of that as to have used the modest “If I have seen further it is by standing on the shoulders of giants” mentioned in my previous post (Dangerous knowledge).

*                     *                   *                   *                   *                   *

Modern science cannot be understood, cannot be appreciated without an authentic sense of the actual history of science. Unfortunately, for the reasons outlined above, contemporary culture is pervaded by partly ignorance and partly wrong knowledge of the history of science. In elementary schools and in high schools, and in college textbooks in the social sciences, students are mis-taught that science is characterized, defined, by use of “the scientific method”. That is simply not so: see Chapter 2 in Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017)  and sources cited there. The so-called the scientific method is an invention of philosophical speculation by would-be interpreters of the successes of science; working scientists never subscribed to this fallacy, see for instance Reflections of a Physicist (P. W. Bridgman, Philosophical Library, 1955), or in 1992 the physicist David Goodstein, “I would strongly recommend this book to anyone who hasn’t yet heard that the scientific method is a myth. Apparently there are still lots of those folks around” (“this book” being my Scientific Literacy and Myth of the Scientific Method).

The widespread misconception about the scientific method is compounded by the misconception that the progress of science has been owing to individual acts of genius by the people whose names are common currency — Galileo, Newton, Darwin, Einstein, etc. — whereas in reality those unquestionably outstanding individuals were not creating out of the blue but rather placing keystones, putting final touches, synthesizing; see for instance Tony Rothman’s Everything’s Relative: And Other Fables from Science and Technology (Wiley, 2003). The same insight is expressed in Stigler’s Law, that discoveries are typically named after the last person who discovered them, not the first (S. M. Stigler, “Stigler’s Law of Eponymy”, Transactions of the N.Y. Academy of Science, II, 39 [1980] 147–58).

That misconception about science progressing by lauded leaps by applauded geniuses is highly damaging since it hides the crucially important lesson that the acts of genius that we praise in hindsight were vigorously, often even viciously resisted by their contemporaries, their contemporary scientific establishment and scientific consensus; see “Resistance by scientists to scientific discovery” (Bernard Barber, Science, 134 [1961] 596–602); “Prematurity and uniqueness in scientific discovery” (Gunther Stent, Scientific American, December 1972, 84–93); Prematurity in Scientific Discovery: On Resistance and Neglect (Ernest B. Hook (ed)., University of California Press, 2002).

What is perhaps most needed nowadays, as the authority of science is invoked in so many aspects of everyday affairs and official policies, is clarity that any contemporary scientific consensus is inherently and inevitably fallible; and that the scientific establishment will nevertheless defend it zealously, often unscrupulously, even when it is demonstrably wrong.

 

Recommended reading: The historiography of the history of science, its relation to general history, and related issues, as well as synopses of such special topics as evolution or relativity, are treated authoritatively in Companion to the History of Modern Science (eds.: Cantor, Christie, Hodge, Olby; Routledge, 1996) [not to be confused with the encyclopedia titled Oxford Companion to the History of Modern Science, ed. Heilbron, Oxford University Press, 2003).

Posted in consensus, media flaws, resistance to discovery, science is not truth, scientific culture, scientific literacy, scientism, scientists are human, the scientific method, unwarranted dogmatism in science | Tagged: , , | 2 Comments »

Science is broken

Posted by Henry Bauer on 2017/11/21

Science is broken: Perverse incentives and the misuse of quantitative metrics have undermined the integrity of scientific research is the full title of an article published in the on-line journal AEON . I learned of it through a friend who was interested in part because the authors are at the university from which I retired some 17 years ago.

The article focuses on the demands on researchers to get grants and publish, and that their achievements are assessed quantitatively rather than qualitatively, through computerized scoring of such things as Journal Impact Factor and numbers of citations of an individual’s work.

I agree that those things are factors in what has gone wrong, but there are others as well.

The AEON piece is an abbreviated version of the full article in Environmental Engineering Science (34 [2017] 51-61; DOI: 10.1089/ees.2016.0223). I found it intriguing that the literature cited in it overlaps very little with the literature with which I’ve been familiar. That illustrates how over-specialized academe has become, and with that the intellectual life of society as a whole. There is no longer a “natural philosophy” that strives to integrate knowledge across the board, from all fields and specializations; and there are not the polymath public intellectuals who could guide society through the jungle of ultra-specialization. So it is possible, as in this case of “science is broken”, for different folk to reach essentially the same conclusion by extrapolating from quite different sets of sources and quite independently of one another.

I would add more factors, or perhaps context, to what Edwards and Roy emphasized:

The character of research activity has changed out of sight since the era or “modern science” began; for example, the number of wannabe “research universities” in the USA has tripled or quadrupled since WWII — see “Three stages of modern science”; “The science bubble”; chapter 1 in Science Is Not What You Think [McFarland 2017].

This historical context shows how the perverse incentives noted by Edwards and Roy came about. Honesty and integrity, dedication to truth-seeking above all, were notable aspects of scientific activity when research was something of an ivory-tower avocation; nowadays research is so integrated with government and industry that researchers face much the same difficulties as professionals who seek to practice honesty and integrity while working in the political realm or the financial realm: the system makes conflicts of interest, institutional as well as personal, inevitable. John Ziman (Prometheus Bound, Cambridge University Press) pointed out how the norms of scientific practice nowadays differ from those traditionally associated with science “in the good old days” (the “Mertonian” norms of communality, universality, disinterestedness, skepticism).

My special interest has long been in the role of unorthodoxies and minority views in the development of science. The mainstream, the scientific consensus, has always resisted drastic change (Barber, “Resistance by scientists to scientific discovery”, Science, 134 [1961] 596–602), but nowadays that resistance can amount to suppression; see “Science in the 21st century”; Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth [McFarland, 2012]). Radical dissent from mainstream views is nowadays expressed openly almost only by long-tenured full professors or by retired people.

I’m in sympathy with the suggestions at the end of the formal Edwards and Roy paper, but I doubt that even those could really fix things since the problem is so thoroughgoingly systemic. Many institutions and people are vested in the status quo. Thus PhD programs will not change in the desired direction so long as the mentoring faculty are under pressure to produce more publications and grants, which leads to treating graduate students as cheap hired hands pushing the mentor’s research program instead of designing PhD research as optimum for neophytes to learn to do independent research. The drive for institutional prestige and status and rankings seems the same among university leaders, and they seek those not by excelling in “higher education” but by winning at football and basketball and by getting and spending lots of grant money on “research”. How to change that obsession with numbers: dollars for research, games won in sports?

That attitude is not unique to science or to academe. In society as a whole there has been increasing pressure to find “objective” criteria to avoid the biases inherent inevitably in human judgments. Society judges academe by numbers — of students, of research expenditures, of patents, of magnitude of endowment , etc. — and we compare nations by GDP rather than level of satisfaction among the citizens. In schools we create “objective” and preferably quantifiable criteria like “standards of learning” (SOLs), that supersede the judgments of the teachers who are in actual contact with actual students. Edwards and Roy cite Goodhart’s Law, which states that “when a measure becomes a target, it ceases to be a good measure”, which was new to me and which encapsulates so nicely much of what has gone wrong. For instance, in less competitive times, the award of a research grant tended to attest the quality of the applicant’s work; but as everything increased in size, and the amount of grants brought in became the criterion of quality of applicant and of institution, the aim of research became to get more grants rather than to do the most advancing work that would if successful bring real progress as well as more research funds. SOLs induced teachers to cheat by sharing answers with their students before giving the test. And so on and on. The cart before the horse. The letter of every law becomes the basis for action instead of the human judgment that could put into practice the spirit of the law.

Posted in conflicts of interest, consensus, fraud in science, funding research, politics and science, resistance to discovery, science is not truth, scientific culture | Tagged: , | Leave a Comment »

 
%d bloggers like this: