Skepticism about science and medicine

In search of disinterested science

Archive for the ‘scientism’ Category

Organized so-called “Skeptics” groups

Posted by Henry Bauer on 2021/08/04

Those of us who have been seriously and open-mindedly interested in such controversial topics as Loch Ness Monsters, UFOs, parapsychology, etc., etc., are quite familiar  with the dogmatic attitudes of individuals and groups that designate themselves as Skeptics. The earliest and iconic such groups were CSICOP: The Committee for the Scientific Investigation of Claims of the Paranormal and its analogous group in Germany, GWUP: Gesellschaft zur Wissenschaftlichen Untersuchung von Parawissenschaften.

When they were first established,  some individuals took seriously the mission statements of investigating scientifically these controversial topics; but as it became clear that these groups aimed not at unbiased investigation but were concerned to ensure that such pseudo-science would not ever find acceptance in the wider society, a few prominent individuals resigned from the groups amid a certain amount of public to and fro. Marcello Truzzi resigned from CSICOP and Edgar Wunder from GWUP.

A wide-ranging  retrospective and updated discussion of the dogmatic character of the so-called “Skeptical”  groups has been published in the Zeitschrift für Anomalistik (Journal of Anomalistics), 21 (2021) issue 1; it is freely available at https://www.anomalistik.de/zeitschrift/inhalt/zfa-21-1 (my thanks to Harry Kriz for this information). It is well worth reading by anyone interested in these matters, and much of the issue is either written in English or accompanied by a translation into English.

 Edgar Wunder writes about past and present and clarifies his own position, which has often been misdescribed. All the commentaries are well worth reading, including an introductory editorial by Gerhard Mayer (Science, faith, faith in science). I was particularly impressed by the brief, cogent, insightful piece by Dean Radin (On pathological skepticism).

Posted in science is not truth, scientism, unwarranted dogmatism in science | Tagged: , , , , , | Leave a Comment »

From uncritical about science to skeptical about science: 5

Posted by Henry Bauer on 2021/01/09

Learning from what science ignores — within science as well as outside

The Society for Scientific Exploration (SSE) had been founded at the start of the 1980s by scientists, engineers, and other scholars who believed that there was sufficient substantive evidence, enough sheer facts, to warrant proper scientific investigation of topics ignored by science or dismissed as fictive, existing not in Nature’s reality but only in human imaginations: psychic phenomena; flying saucers or UFOs (Unidentified Flying Objects); cryptozoology — animals unknown to biology, or extinct animals said to be still extant; as well as such heretical views as that the theory of relativity is unsound [1].

Being ignored in the face of apparently good evidence was the shared bond within SSE. Few if any of us shared belief in the reality of all the topics that one or more members favored. I certainly didn’t. In fact, I soon began wondering how it was that so many competent, accomplished, intelligent, highly educated, cosmopolitan people could believe firmly in things that seemed to me highly implausible, at best doubtful.

The next insight followed naturally: My new colleagues surely wondered how I, a successful  chemist and cosmopolitan Dean of Arts and Sciences, could firmly believe in the reality of the Loch Ness Monster.

My fascination over that had begun through random chance, a book picked up and riffled through. No doubt something analogous, some unplanned experience, had set my new colleagues off on their particular interests.

There is an important general point to be made here. Scientists characteristically have an intellectual blind spot — certainly I do: imagining that beliefs are created by factual knowledge, remain held because of factual evidence, and can be changed by new facts. That is simply not the case.
Interest or some other stimulus is crucial. Why does one ever seek facts in some specific direction?
Everyone would likely look for reliable knowledge about something pertinent to health, family matters, earning a living; but it can also happen by chance, by happening upon a book picked up at random. So there is no reason why others should find interest where I happen to.

And it is not sufficient that good and respected friends and colleagues urge one to look at the facts. I have maintained only an observer’s interest in most of the matters that absorb others in the Society. Even though I’d quite like to know enough to warrant having an informed opinion, the problem is the sheer amount of time and effort needed to wade through all the claims and counterclaims before reaching a reasonably firm belief or disbelief. Outside chemistry, I’ve looked in enough detail at only three major controversial topics: Loch Ness Monsters, HIV/AIDS, and global warming (or climate-change).

That there are a great variety of different specialized interests in the Society for Scientific Exploration was not a disturbing factor. We talked (and wrote and published [2]) about our interests and claimed facts and speculations, and benefited from constructive mutual criticism, sometimes quite incisive.  Frustration at the lack of interest from mainstream science was and remains an overwhelmingly strong bond. A corollary is something like shared disdain for the individuals and groups who wage public campaigns about the purported dangers to society of believing in the reality of UFOs, Bigfoot, psychic phenomena and the like [3]. Those activists, who purport to be supporters and defenders of science, typically describe themselves as Skeptics [4], a grossly misleading misnomer since they are dogmatists of the highest order, unwilling to contemplate that official or mainstream science might be wrong in any particular — a stance that ignores the whole history of science.
To my mind, the real danger to society stems from such arrogantly dogmatic groups which insist that everyone share their particular beliefs, as is all too commonly the case with specific religions or, in this case, scientism, the religious faith that science be acknowledged as the sole authoritative source of knowledge and understanding.
These “Skeptics” (Truzzi famously and aptly called them “pseudo-skeptics”) criticize the topics of interest within SSE as pseudo-science, but SSE advocates scientific exploration, seeking the best available facts about Nature and trying to explain and understand them. SSE has quarrels not with “science” but with the too-many career scientists who behave unscientifically in forming opinions without looking at the facts, and then defend those opinions dogmatically.

When I analyzed the Velikovsky Affair [5], what had then most struck me was how incompetently the scientific community had criticized Velikovsky’s pseudo-science, and how little so many scientists seemed to understand what science is really about. Several decades later, having written articles and books about the prevalence of dogmatism in science [6], I can see in retrospect that I had overlooked or not noticed or missed the significance of how insufferably dogmatic the criticisms of Velikovsky had been. Yet that dogmatism was far from a minor part of the Affair; it surely played some part in bringing some social scientists and humanists to rally to Velikovsky’s defense.

The Society for Scientific Exploration also led to my learning about the extent of dogmatism within mainstream science. The society offered a forum not only for topics dismissed as pseudoscience, we also heard at times about  the suppression of unorthodox views within mainstream science. For example, Thomas Gold was widely acknowledged and applauded for his original insights in astrophysics, but mainstream science wanted nothing to do with his ideas about the origin of what are said to be fossil fuels in the Earth  and about life having originated deep in the earth rather than in warm ponds on its surface [7]. Gold also favored the steady-state theory of the cosmos rather than the accepted paradigm of the Big Bang. Halton Arp, an observational astronomer, published data that support the steady-state theory, whereupon mainstream science refused to allow him further access it to the telescopes he needed [8]. A variety of observations indicate that earthquakes may be predictable by electromagnetic or other signals, but mainstream geology will have none of it [9]. “Cold fusion” remains beyond the pale despite intriguing evidence from competent mainstream researchers [10].

I learned that even distinguished mainstream researchers who take a distinctly different view from the prevailing majority consensus are treated no better than are those of us accused of espousing pseudo-science, in fact they often have it worse: their unorthodoxies can damage their career, whereas most members of SSE earn their living by something quite separate from their oddball interests, which are more hobbies, things pursued in amateur fashion, out of sheer fascination and not as a way to earn a living.

So Loch Ness Monsters led me to SSE and SSE led me to recognize how widespread throughout mainstream science is the passionately dogmatic, even vindictive suppression of minority opinion [6] — quite contrary to the popular view of science, the idealistic view that remains my own vision of how science should be carried on.

It seemed natural, then, in my new academic career in STS, to make my special interest the study of scientific controversies and of what exactly distinguishes genuine proper science from what is widely denigrated as fringe, alternative, or pseudo science [1].
My research focus required looking for examples of scientific controversies to study. I don’t recall what first alerted me that there was dissent from the belief that HIV causes AIDS, that there was ever any controversy about it, but I did come across that in the early 1990s.
That is what eventually taught me that what taken-as-authoritative institutions nowadays proclaim in the name of science should never be automatically trusted; it should be fact-checked. The dogmatism, careerism, and institutional as well as personal conflicts of interest that are now rampant in contemporary science have actually brought official public policies and actions that are contrary to the facts of reality, have harmed massive numbers of people, and threaten to cause yet further damage.

—————————————————————————————————–

[1]    Science or Pseudoscience: Magnetic Healing, Psychic Phenomena, and Other Heterodoxies, University of Illinois Press 2001
[2]    The Journal of Scientific Exploration began publication in 1987. It is now freely available on-line
[3]    Examples are discussed and critiqued at p. 200 ff. in [1]
[4]    The iconic organization was CSICOP (Committee for Scientific Investigation of Claims of the Paranormal), founded in 1976 by predominantly non-scientists (philosophers, psychologists, writers, amateur investigators) but including a few prominent scientists, for example Carl Sagan; it publishes Skeptical Inquirer and includes under matters criticized as “paranormal”, claims of the existence of what would be perfectly natural creatures
[5]    Beyond Velikovsky: The History of a Public Controversy, University of Illinois Press, 1984
[6]    Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland,  2012
[7]    Fuel’s Paradise
[8]    Halton Arp, Quasars, Redshifts and Controversies, Interstellar Media, 1987; Seeing Red: Redshifts, Cosmology and Academic Science, Apeiron, 1998
[9]    On earthquake prediction, but more generally about matters that global tectonics (“continental drift”) does not adequately explain, see the NCGT Journal
[10]  The topic is nowadays thought to be not the fusion originally inferred but the general phenomenon of Low Energy Nuclear Reactions (LENR), nuclear transformations at ordinary temperatures

Posted in conflicts of interest, denialism, global warming, medical practices, science is not truth, science policy, scientific culture, scientism, unwarranted dogmatism in science | Tagged: , , , , , | 2 Comments »

From uncritical about science to skeptical about science

Posted by Henry Bauer on 2020/12/31

Science has been so successful at unlocking Nature’s secrets, especially since about the 16th century, that by the early decades of the 20th century, science had become almost universally accepted as the trustworthy touchstone of knowledge about and insight into the material world. In many ways and in many places, science has superceded religion as the ultimate source of truth.
Yet in the 21st century, an increasing number and variety of voices are proclaiming that science is not — or no longer — to be trusted.
Such disillusion is far from unanimous, but I certainly share it [1], as do many others [2, 3], including such well-placed insiders as editors of scientific periodicals.
How drastically different 21st– century science is from the earlier modern science that won such status and prestige seems to me quite obvious; yet the popular view seems oblivious to this difference. Official statements from scientific authorities and institutions are still largely accepted automatically, unquestioningly, by the mass media and, crucially, by policy-makers and governments, including international collaborations.
Could my opinion be erroneous about a decline in the trustworthiness of science?
If not, why is it that what seems so obvious to me has not been noticed, has been overlooked by the overwhelming majority of practicing researchers, by pundits and by scholars of scientific activity and by science writers and journalists?

That conundrum had me retracing the evolution of my views about science, from my early infatuation with it to my current disillusionment.
Almost immediately I realized that I had happened to be in some of the right places at some of the right times [4] with some of the right curiosity to be forced to notice the changes taking place; changes that came piecemeal over the course of decades.
That slow progression will also have helped me to modify my belief, bit by bit, quite slowly. After all, beliefs are not easily changed. From trusting science to doubting science is quite a jump; for that to occur quickly would be like suddenly acquiring a religious belief, Saul struck on the road to Damascus, or perhaps the opposite, losing a faith like the individuals who escape from cults, say Scientology — it happens quite rarely.
So it is natural but worth noting that my views changed slowly just as the circumstances of research were also changing, not all at once but gradually.
Of course I didn’t recognize at the time the cumulating significance of what I was noticing. That comes more easily in hindsight. Certainly I could not have begun to suspect that a book borrowed for light recreational reading would lead a couple of decades later to major changes of professional career.

Beginnings: Science, chemistry, unquestioning trust in science

I had become enraptured by science, and more specifically by chemistry, through an enthusiastic teacher at my high school in Sydney, Australia, in the late 1940s. My ambition was to become a chemist, researching and teaching, and I could imagine nothing more interesting or socially useful.
Being uncritically admiring of science came naturally to my cohort of would-be or potential scientists. It was soon after the end of the second World War; and that science really understands the inner workings of Nature had been put beyond any reasonable doubt by the awesome manner in which the war ended, with the revelation of atomic bombs. I had seen the newspaper headlines, “Atom bomb used over Japan”, as I was on a street-car going home from high-school, and I remember thinking, arrogantly, “Gullible journalism, swallowing propaganda; there’s no such thing as an atomic bomb”.

Learning how it was a thing made science seem yet more wonderful.

The successful ending of that war was also of considerable and quite personal significance for me. By doing it, “science” had brought a feeling of security and relief after years of high personal anxiety, even fear. When I was a 7-year-old school-boy, my family had escaped from Austria, in the nick of time, just before the war had started; and then in Australia, we had experienced the considerable fear of a pending Japanese invasion, a fear is made very real by periodic news of Japanese atrocities in China, for instance civilians being buried alive, as illustrated in photographs.
Trusting science was not only the Zeitgeist of that time and place, it was personally welcome, emotionally appealing.

The way sciences were taught only confirmed that science could be safely equated with truth. For that matter, all subjects were taught quite dogmatically. We just did not question what our teachers said; time and place, again. In elementary school we had sat with arms folded behind our backs until the teacher entered, when we stood up in silent respect. Transgressions of any sort were rewarded by a stroke of a cane on an outstretched hand.
(Fifty years later, in another country if not another world, a university student in one of my classes complained about getting a “B” and not an “A”.)

I think chemistry also conduces to trusting that science gets it right. Many experiments are easy to do, making it seem obvious that what we’ve learned is absolutely true.
After much rote learning of properties of elements and compounds, the Periodic Table came as a wonderful revelation: never would I have to do all that memorizing again, everything can be predicted just from that Table.
Laboratory exercises, in high school and later at university, worked just as expected; failures came only from not being adept or careful enough. The textbooks were right.

Almost nothing at school or university, in graduate as well as undergraduate years, aroused any concerns that science might not get things right. A year of undergraduate research and half-a-dozen years in graduate study brought no reason to doubt that science could learn Nature’s truths. Individuals could make mistakes, of course; I was taken aback when a standard reference resource, Chemical Abstracts, sent me erroneously to an article about NaI instead of NOI — human error, obviously, in transcribing spoken words.

Of course there was still much to learn, but no reason to question that science could eventually come to really understand all the workings of the material world.

Honesty in doing science was taken for granted. We heard the horror story of someone who had cheated in some way; his studying of science was immediately canceled and he had to take a job somewhere as a junior administrator. Something I had written was plagiarized — the historical introduction in my PhD thesis — and the miscreant was roundly condemned, even as he claimed a misunderstanding. Individuals could of course go wrong, but that threw no doubt on the trustworthiness of Science itself.

In many ways, scientific research in Australia in the 1940s and 1950s enjoyed conditions not so different from the founding centuries of modern science when the sole driving aim was to learn how the world works. In the universities, scientific research was very much part of the training of graduate students for properly doing good science. The modest needed resources were provided by the University. No time and effort had to be spent seeking necessary support from outside sources, no need to locate and kowtow to potential patrons, individuals or managers at foundations or government agencies.
Research of a more applied sort was carried out by the government-funded Council for Scientific and Industrial Research, CSIR (which later became a standard government agency, the Commonwealth Scientific and Industrial Research Organization, CSIRO). There the atmosphere was quite like that in academe: people more or less happily working at a self-chosen vocation. The aims of research were sometimes quite practical, typically how better to exploit Australia’s natural resources: plentiful coal, soft brown as well as hard black; or the wool being produced in abundance by herds of sheep. CSIR also made some significant “pure science” discoveries, for example the importance of nutritional trace elements in agricultural soils [5] and in the development of radio astronomy [6].

In retrospect the lack of money-grubbing is quite striking. At least as remarkable, and not unrelated, is that judgments were made qualitatively, not quantitatively. People were judged by the quality, the significance, the importance of what they accomplished, rather than by how much of something they did. We judged our university teachers by their mastery of the subjects they taught and on how they treated us. Faculty appointments and promotions relied on personal recommendations. Successful researchers might often — and naturally— publish more than others, but not necessarily. Numbers of publications were not the most important thing, nor how often one’s publications were cited by others: The Science Citation Index was founded only in 1963, followed by the Social Sciences Citation Index in 1973 and the Arts and Humanities Citation Index a few years later. “Impact factors” of scientific journals had begun to be calculated in the early 1970s.

So in my years of learning chemistry and beginning research, nothing interfered with having an idealistic view of science, implicitly “pure” science, sheer knowledge-seeking. For my cohort of students, it was an attractive, worthy vocation. The most desired prospect was to be able to work at a university or a research institute. If one was less fortunate, it might be a necessary to take a job in industry, which in those years was little developed in Australia, involving the manufacture of such uncomplicated or unsophisticated products as paint, or the processing of sugar cane or technicalities associated with brewing beer, making wine, or distilling spirits.

The normal path to an academic career in Australia began with post-doctoral experience in either Britain or the United States. My opportunity came in the USA; there, in the late 1950s, I caught my first glimpses of what science would become, with an influx of funds from government and industry and the associated consequences, then unforeseen if not unforeseeable but at any rate not of any apparent concern.

——————————————-

[1]    Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017
[2]    Critiques of Contemporary Science and Academe
https://mega.nz/file/NfwkSR7S#K7llqDfA9JX_mVEWjPe4W-uMM53aMr2XMhDP6j0B208
[3]    What’s Wrong With Medicine; https://mega.nz/file/gWoCWTgK#1gwxo995AyYAcMTuwpvP40aaB3DuA5cvYjK11k3KKSU
[4]    Insight borrowed from Paula E. Stephen & Sharon G. Levin, Striking the Mother Lode in Science: The Importance of Age, Place, and Time, Oxford University Press, 1992
[5]    Best known is the discovery that cobalt supplements avoided “coast disease”, a wasting condition of sheep; see Gerhard N. Schrauzer, “The discovery of the essential trace elements: An outline of the history of biological trace element research”, chapter 2, pp. 17-31, in Earl Frieden, Biochemistry of the Essential Ultratrace Elements, Plenum Press, 1984; and the obituary, “Hedley Ralph Marston 1900-1965”; https://www.science.org.au/fellowship/fellows/biographical-memoirs/hedley-ralph-marston-1900-1965
[6] Stories of Australian Astronomy: Radio Astronomy; https://stories.scienceinpublic.com.au/astronomy/radio-astronomy/

Posted in conflicts of interest, fraud in science, funding research, scientific culture, scientism | Tagged: , , , | Leave a Comment »

The misleading popular myth of science exceptionalism

Posted by Henry Bauer on 2020/12/28

Human beings are fallible; but we suppose the Pope to be infallible on spiritual matters and science to be exceptional among human endeavors as correctly, authoritatively knowledgeable about the workings of the material world. Other sources purporting to offer veritable knowledge may be fallible — folklore, history, legend, philosophy — but science can be trusted to speak the truth.

Scholars have ascribed the infallibility of science to its methodology and to the way scientists behave. Science is thought to employ the scientific method, and behavior among scientists is supposedly described by the Mertonian Norms. Those suppositions have somehow seeped into the conventional wisdom. Actually, however, contemporary scientific activity does not proceed by the scientific method, nor do scientists behave in accordance with the Mertonian Norms. Because the conventional wisdom is so wrong about how science and scientists work, public expectations about science are misplaced, and public policies and actions thought to be based on science may be misguided.

Contemporary science is unrecognizably different from the earlier centuries of modern science (commonly dated as beginning around the 16th century). The popular view was formed by those earlier times, and it has not yet absorbed how radically different the circumstances of scientific activities have become, increasingly since the middle of the 20th century.

Remarkable individuals were responsible for the striking achievements of modern science that brought science its current prestige and status; and there are still some remarkably talented people among today’s scientists. But on the whole, scientists or researchers today are much like other white-collar professionals [1: p. 79], subject to conflicts of interest and myriad annoyances and pressures from patrons and outside interests; 21st century “science” is just as interfered with and corrupted by commercial, ideological, and political forces as are other sectors of society, say education, or justice, or trade.

Modern science developed through the voluntary activities of individuals sharing the aim of understanding how Nature works. The criterion of success was that claimed knowledge be true to reality. Contemporary science by contrast is not a vocation carried on by self-supporting independent individuals; it is done by white-collar workers employed by a variety of for-profit businesses and industries and not-for-profit colleges, universities, and government agencies. Even as some number of researchers still genuinely aim to learn truths about Nature, their prime responsibility is to do what their employers demand, and that can conflict with being wholeheartedly truthful.

The scientific method and the Mertonian Norms
 do not encompass the realities of contemporary science

The myth of the scientific method has been debunked at book length [2]. It should suffice, though, just to point out that the education and training of scientists may not even include mention of the so-called scientific method.

I had experienced a bachelor’s-degree education in chemistry, a year of undergraduate research, and half-a-dozen years of graduate research leading to both a master’s degree and a doctorate before I ever heard of “the scientific method”. When I eventually did, I was doing postdoctoral research in chemistry (at the University of Michigan); and I heard of “the scientific method” not from my sponsor and mentor in the Chemistry Department but from a graduate student in political science. (Appropriately enough, because it is the social and behavioral sciences, as well as some medical doctors, who make a fetish of claiming to follow the scientific method, in the attempt to be granted as much prestige and trustworthiness as physics and chemistry enjoy.)

The scientific method would require individuals to change their beliefs readily whenever the facts seem to call for it. But everything that psychology and sociology can agree on is that it is very difficult and considerably rare for individuals or groups to modify a belief once it has become accepted. The history of science is consonant with that understanding: New and better understanding is persistently resisted by the majority consensus of the scientific community for as long as possible [3, 4]; pessimistically, in the words of Max Planck, until the proponents of the earlier belief have passed away [5]; as one might put it, science progresses one funeral at a time.

The Mertonian norms [6], too, are more myth than actuality. They are, in paraphrase:

Ø     Communality or communalism (Merton had said “communism”): Science is an activity of the whole scientific community and it is a public good — findings are shared freely and openly.
Ø      Universalism: Knowledge about the natural world is universally valid and applicable. There are no separations or distinctions by nationality, religion, race, sex, etc.
Ø      Disinterestedness: Science is done for the public good, not for personal benefit; scientists seek to be impartial, objective, unbiased, not self-serving.
Ø      Skepticism: Claims and reported findings are subject to critical appraisal and testing throughout the scientific community before they can be accepted as proper scientific knowledge.

As with the scientific method, these norms suggest that scientists behave in ways that do not come naturally to human beings. Free communal sharing of everything might perhaps have characterized human society in the days of hunting and foraging [7], but it was certainly not the norm in Western society at the time of the Scientific Revolution and the beginnings of modern science. Disinterestedness is a very strange trait to attribute to a human being, voluntarily doing something without having any personal interest in the outcome; at the very least, there is surely a strong desire that what one does should be recognized as the good and right way to do things, as laudable in some way. Skepticism is no more natural than is the ready willingness to change beliefs demanded by the scientific method.

As to universalism, that goes without saying if claimed knowledge is actually true, it has nothing to do with behavior. If some authority attempts to establish something that is not true, it just becomes a self-defeating, short-lived dead end like the Stalinist “biology” of Lysenko or the Nazi non-Jewish “Deutsche Physik” [8].

Merton wrote that the norms, the ethos of science, “can be inferred from the moral consensus of scientists as expressed in use and wont, in countless writings on the scientific spirit and in moral indignation directed toward contraventions of the ethos” [6]. That falls short of claiming to have found empirically that scientists actually behave like that for the inferred reasons.

Merton’s norms are a sociologist’s speculation that the successes of science could only have come if scientists behaved like that; just as “the scientific method” is a philosophers’ guess that true knowledge could only be arrived at if knowledge seekers proceeded like that.

More compatible with typical human behavior would be the following:

Early modern science became successful after the number of people trying to understand the workings of the natural world reached some “critical mass”, under circumstances in which they could be in fairly constant communication with one another. Those circumstances came about in the centuries following the Dark Ages in Europe. Eventually various informal groups began to meet, then more formal “academies” were established (of which the Royal Society of London is iconic as well as still in existence). Exchanges of observations and detailed information were significantly aided by the invention of inexpensive printing. Relatively informal exchanges became more formal, as Reports and Proceedings of Meetings, leading to what are now scientific journals and periodicals (some of which still bear the time-honored title of “Proceedings of . . .).

Once voluntary associations had been established among individuals whose prime motive was to understand Nature, some competition, some rivalry, and also some cooperation will have followed automatically. Everyone wanted to get it right, and to be among the first to get it right, so the criterion for success was the concurrence and approval of the others who were attempting the same thing. Open sharing was then a matter of self-interest and therefore came naturally, because one could obtain approval and credit only if one’s achievements were known to others. Skepticism was provided by those others: one had to get it right in order to be convincing. There was no need at all for anyone to be unnaturally disinterested. (This scenario is essentially the one Michael Polanyi  described by the analogy of communally putting together a jigsaw puzzle [2: pp. 42-44, passim; 9].)

Such conditions of free, voluntary interactions among individuals sharing the sole aim of understanding Nature, something like a intellectual free-market conditions, simply do not exist nowadays; few if any researchers can be self-supporting, independent, intellectual entrepreneurs, most are employees and thereby beholden to and restricted by the aims and purposes of those who hold the purse-strings.

Almost universally nowadays, the gold standard of reliability is thought to be “the peer-reviewed mainstream literature”. But it would be quite misleading to interpret peer review as the application of organized skepticism, “critical appraisal and testing throughout the scientific community”. As most productive researchers well know, peer review does not guarantee the accuracy or objectivity or honesty of what has passed peer-review. In earlier times, genuine and effective peer-review took place by the whole scientific community after full details of claimed results and discoveries had been published. Nowadays, in sharp contrast, so called peer-review is carried out by a small number of individuals chosen by journal editors to advise on whether reported claims should even be published. Practicing and publishing researchers know that contemporary so-called peer-review is riddled with bias, prejudice, ignorance and general incompetence. But even worse than the failings of peer review in decisions concerning publication is the fact that the same mechanism is used to decide what research should be carried out, and even how it should be carried out [1: pp. 106-9, passim].

Contemporary views of science, and associated expectations about science, are dangerously misplaced because of the pervasive mistaken belief that today’s scientific researchers are highly talented, exceptional individuals in the mold of Galileo, Newton, Einstein, etc.,  and that they are unlike normal human beings in being disinterested, seeking only to serve the public good, disseminating their findings freely, self-correcting by changing their theories whenever the facts call for it, and perpetually skeptical about their own beliefs.

Rather, a majority consensus nowadays exercises dogmatic hegemony, insisting on theories contrary to fact on a number of  topics, including such publicly important ones as climate-change and HIV/AIDS [10].

————————————————-

[1]    Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017
[2]    Henry H. Bauer, Scientific Literacy and Myth of the Scientific Method, University of Illinois Press, 1992;
“I would strongly recommend this book to anyone who hasn’t yet heard that the scientific method is a myth. Apparently there are still lots of those folks around”
(David L. Goodstein, Science, 256 [1992] 1034-36)
[3]    Bernard Barber, “Resistance by scientists to scientific discovery”,
 Science, 134 (1961) 596-602
[4]    Thomas S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1970 (2nd ed., enlarged ; 1st ed. 1962)
[5]    Max Planck, Scientific Autobiography and Other Papers, 1949; translated from German by Frank Gaynor, Greenwood Press, 1968
[6]    Robert K. Merton, “The normative structure of science” (1942); pp. 267–78 in The Sociology of Science (ed. N. Storer, University of Chicago Press, 1973)
[7]    Christopher Ryan & Cacilda Jethá, Sex at Dawn: The Prehistoric Origins of Modern Sexuality, HarperCollins, 2010
[8]    Philipp Lenard, Deutsche Physik, J. F. Lehmann (Munich), 1936
[9]    Michael Polanyi, “The Republic of Science: Its political and economic theory”,
Minerva, I (1962) 54-73
[10]  Henry H. Bauer, Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

Posted in conflicts of interest, consensus, funding research, media flaws, peer review, politics and science, resistance to discovery, science is not truth, scientific culture, scientism, scientists are human, the scientific method, unwarranted dogmatism in science | Tagged: , | 1 Comment »

Science Court: Why and What

Posted by Henry Bauer on 2020/12/16

The idea for what has come to be called a Science Court was proposed half a century ago by Arthur Kantrowitz [1].

The development of nuclear reactors as part of the atom-bomb project made it natural to contemplate the possibility of generating power for civil purposes by means of nuclear reactors (the reactor at Hanford that made plutonium for the Nagasaki bomb was also the first full-scale nuclear reactor ever built [2]).

The crucial question was whether power-generating nuclear reactors could be operated safely. The technical experts were divided over that, and Kantrowitz proposed that an “Institution for Scientific Judgment” was needed to adjudicate the opposing opinions.

In those years, scientific activity was still rather like in pre-WWII times: A sort of ivory-tower cottage industry of largely independent intellectual entrepreneurs who shared the aim of learning how the material world works. Mediating opposing opinions could then seem like a relatively straightforward matter of comparing data and arguments. Half a century later, however, scientific activity has pervaded business, commerce, and medical practices, and research has become intensely competitive, with cutthroat competition for resources and opportunities for profit-making and achieving personal wealth and influence. Conflicts of interest are ubiquitous and inescapable [3]. Mediating opposing technical opinions is now complicated because public acceptance of a particular view has consequences for personal and institutional power and wealth; deciding what “science” truly says is hindered by personal conflicts of interest, Groupthink, and institutional conflicts of interest.

Moreover, technical disagreements nowadays are not between more or less equally placed technical experts; they are between a hegemonic mainstream consensus and individual dissenters. The consensus elite controls what the media and the public learn about “science”, as the “consensus” dominates “peer review”, which in practice determines all aspects of scientific activity, for instance the allocation of positions and research resources and the publication (or suppression) of observations or results.

It has become quite common for the mainstream consensus to effectively suppress minority views and anomalous research results, often dismissing them out of hand, not infrequently labeling them pejoratively as denialist or flat-earther crackpot [4]. Thereby the media, the public, and policymakers may not even become aware of the existence of competent, plausible dissent from a governing consensus.

The history of science is, however, quite unequivocal: Over the course of time, a mainstream scientific consensus may turn out to be inadequate and to be replaced by previously denigrated and dismissed minority views.

Public actions and policies might bring about considerable damage if based on a possibly mistaken contemporary scientific consensus. Since nowadays a mainstream consensus so commonly renders minority opinions invisible to society at large, some mechanism is needed to enable policymakers to obtain impartial, unbiased, advice as to the possibility that minority views on matters of public importance should be taken into consideration.

That would be the prime purpose of a Science Court. The Court would not be charged with deciding or declaring what “science” truly says. It would serve just to force openly observed substantive engagement among the disagreeing technical experts — “force” because the majority consensus typically refuses voluntarily to engage substantively with dissident contrarians, even in private.

In a Court, as the elite consensus and the dissenters present their arguments and their evidence, points of disagreement would be made publicly visible and also clarified under mutual cross-examination. That would enable lay observers — the general public, the media, policymakers — to arrive at reasonably informed views about the relative credibility of the proponents of the majority and minority opinions, through noting how evasive or responsive or generally confidence-inspiring they are. Even if no immediate resolution of the differences of opinion could be reached, at least policymakers would be sufficiently well-informed about what public actions and policies might plausibly be warranted and which might be too risky for immediate implementation.

A whole host of  practical details can be specified only tentatively at the outset since they will likely need to be modified over time as the Court gains experience. Certain at the beginning is that public funding is needed as well as absolute independence, as with the Supreme Court of the United States. Indeed, a Science Court might well be placed under the general supervision of the Supreme Court. While the latter might not at first welcome accepting such additional responsibilities, that might change since the legal system is currently not well equipped to deal with cases where technical issues are salient [5]. For example, the issue of who should be acceptable as an expert technical witness encounters the same problem of adjudicating between a hegemonic majority consensus and a number of entirely competent expert dissenters as the problem of adjudicating opposing expert opinions.

Many other details need to be worked out: permanent staffing of the Court as well as temporary  staffing for particular cases; appointment or selection of advocates for opposing views; how to choose issues for consideration; the degree and type of authority the Court could exercise, given that a majority consensus would usually be unwilling to engage voluntarily with dissidents. These questions, and more, have been discussed elsewhere [6]. As already noted, however, if a Science Court is actually established, its unprecedented nature would inevitably make desirable progressive modification of its practices in the light of accumulating experience.

————————————————-

[1]    Arthur Kantrowitz, “Proposal for an Institution for Scientific Judgment”, Science, 156 (1967) 763-64

[2]    Steve Olson, The Apocalypse Factory, W. W. Norton, 2020

[3]    Especially chapter 1 in Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

[4]    Henry H. Bauer, Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

[5]    Andrew W. Jurs, “Science Court: Past proposals, current considerations, and a suggested structure”, Drake University Legal Studies Research Paper Series, Research Paper 11–06 (2010); Virginia Journal of Law and Technology, 15 #1

[6]    Chapter 12 in Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

Posted in conflicts of interest, consensus, denialism, funding research, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, scientism, unwarranted dogmatism in science | Tagged: , | 2 Comments »

Why skepticism about science and medicine?

Posted by Henry Bauer on 2020/09/06

My skepticism is not about science and medicine as sources or repositories of objective knowledge and understanding. Skepticism is demanded by the fact that what society learns about science and medicine is mediated by human beings. That brings in a host of reasons for skepticism: human fallibility, individual and institutional self-interest, conflicts of interest, sources of bias and prejudice.

I have never come across a better discussion of the realities about science and its role in society than Richard Lewontin’s words in his book, Biology as Ideology (Anansi Press 1991, HarperPerennial 1992; based on 1990 Massey Lectures, Canadian Broadcasting Corporation):

“Science is a social institution about which there is a great deal of misunderstanding, even among those who are part of it. . . [It is] completely integrated into and influenced by the structure of all our other social institutions. The problems that science deals with, the ideas that it uses in investigating those problems, even the so-called scientific results that come out of scientific investigation, are all deeply influenced by predispositions that derive from the society in which we live. Scientists do not begin life as scientists, after all, but as social beings immersed in a family, a state, a productive structure, and they view nature through a lens that has been molded by their social experience.
. . . science is molded by society because it is a human productive activity that takes time and money, and so is guided by and directed by those forces in the world that have control over money and time. Science uses commodities and is part of the process of commodity production. Science uses money. People earn their living by science, and as a consequence the dominant social and economic forces in society determine to a large extent what science does and how it. does it. More than that, those forces have the power to appropriate from science ideas that are particularly suited to the maintenance and continued prosperity of the social structures of which they are a part. So other social institutions have an input into science both in what is done and how it is thought about, and they take from science concepts and ideas that then support their institutions and make them seem legitimate and natural. . . .
Science serves two functions. First, it provides us with new ways of manipulating the material world . . . . [Second] is the function of explanation” (pp. 3-4). And (p. 5) explaining how the world works also serves as legitimation.

Needed skepticism takes into account that every statement disseminated about science or medicine serves in some way the purpose(s), the agenda(s), of the source or sources of that statement.

So the first thing to ask about any assertion about science or medicine is, why is this statement being made by this particular source?

Statements by pharmaceutical companies, most particularly their advertisements, should never be believed, because, as innumerable observers and investigators have documented, the profit motive has outweighed any concern for the harm that unsafe medications cause even as there is no evidence for definite potential benefit. The best way to decide on whether or not to prescribe or use a drug is by comparing NNT and NNH, the odds on getting benefit compared to the odds of being harmed; but NNT and NNH are never reported by drug companies. For example, there is no evidence whatsoever that HPV vaccination decreases the risk of any cancer; all that has been observed is that the vaccines may decrease genital warts. On the other hand, many individuals have suffered grievous harm from “side” effects of these vaccines (see Holland 2018 in the bibliography cited just below, and the documentary, Sacrificial Virgins. TV ads by Merck, for example in August 2020 on MSNBC, cite the Centers for Disease Control & Prevention as recommending the vaccine not only for girls but also for boys.

For fully documented discussions of the pervasive misdeeds of drug companies, consult the books listed in my periodically updated bibliography, What’s Wrong with Present-Day Medicine.
I recommend particularly Angell 2004, Goldacre 2013, Gøtzsche 2013, Healy 2012, Moynihan, & Cassels 2005. Greene 2007 is a very important but little-cited book describing how numbers and surrogate markers have come to dominate medical practice, to the great harm of patients.

Official reports may be less obviously deceitful than drug company advertisements, but they are no more trustworthy, as argued in detail and with examples in “Official reports are not scientific publications”, chapter 3 in my Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth (McFarland 2012):
“reports from official institutions and organizations . . . are productions by bureaucracies . . . . The actual authors of these reports are technical writers whose duties are just like those of press secretaries, advertising writers, and other public-relations personnel: to put on the actual evidence and conclusions the best possible spin to reinforce the bureaucracy’s viewpoint and emphasize the importance of the bureaucracy’s activities.
Most important: The Executive Summaries, Forewords, Prefaces, and the like may tell a very different story than does the actual evidence in the bulk of the reports. It seems that few if any pundits actually read the whole of such documents. The long public record offers sad evidence that most journalists certainly do not look beyond these summaries into the meat of the reports, given that the media disseminate uncritically so many of the self-serving alarums in those Executive Summaries” (p. 213).

So too with press releases from academic institutions.

As for statements direct from academic and professional experts, recall that, as Lewontin pointed out, “people earn their living by science”. Whenever someone regarded as an expert or authority makes public statements, an important purpose is to enhance the status, prestige, career, profitability, of who is making the statement. This is not to suggest that such statements are made with deliberate dishonesty; but the need to preserve status, as well as the usual illusion that what one believes is actually true, ensures that such statements will be dogmatically one-sided assertions, not judicious assessments of the objective state of knowledge.

Retired academic experts like myself no longer suffer conflicts of interest at a personal or institutional-loyalty level. When we venture critiques of drug companies, official institutions, colleges and universities, and even individual “experts” or former colleagues, we will be usually saying what we genuinely believe to be unvarnished truth. Nevertheless, despite the lack of major obvious conflicts of interest, one should have more grounds than that for believing what we have to say. We may still have an unacknowledged agenda, for instance a desire still to do something useful even as our careers are formally over. Beyond that, of course, like any other human beings, we may simply be wrong, no matter that we ourselves are quite sure that we are right. Freedom from frank, obvious conflicts of interest does not bring with it some superhuman capacity for objectivity let alone omniscience.

In short:
Believe any assertion about science or medicine, from any source, at your peril.
If the matter is of any importance to you, you had best do some investigating of evidence and facts, and comparison of diverse interpretations.

Posted in conflicts of interest, consensus, fraud in medicine, fraud in science, medical practices, peer review, politics and science, science is not truth, scientific literacy, scientism, scientists are human, unwarranted dogmatism in science | Tagged: , , , , | Leave a Comment »

Never again say “just the flu”

Posted by Henry Bauer on 2020/04/14

Trying to understand whether CoVID-19 really is a disease caused by the new (in humans) virus SARS-CoV-2 has instead made me realize that I never had a proper understanding of so-called “normal” “seasonal flu”.

Now I’ve learned that “influenza A and B viruses can cause epidemic disease in humans” whereas “type C viruses usually cause a mild, cold-like illness”.
And it is not only new viruses jumping to humans from other species that cause exotic dangerous diseases like SARS or MERS; influenza viruses too have natural reservoirs in other species, in particular aquatic birds, and can cause disease in a range of mammalian species including pigs, seals, horses, and humans (https://www.afro.who.int/health-topics/influenza).

During the so-called “flu season”, we often respond to inquiries about minor discomforts by saying, “it’s just the flu”, but we really should say, “it’s just a cold”, because flu — influenza — is not at all a negligible matter; it can result in significant illness and mortality and can spread rapidly around the world in seasonal epidemics. “Pandemic influenza is caused by a new or novel influenza that is introduced into a population where few people are immune. . . . The 1918 pandemic (influenza A/H1N1) which infected an estimated 500 million and killed 50-100 million people worldwide has been the most devastating pandemic to date . . . [while the] 1957 Asian Flu pandemic (influenza A/H2N2), 1968 Hong Kong flu pandemic (influenza A/H3N2) and the 2009 (influenza A[H1N1]pdm09) result[ed] in far fewer deaths” (https://www.afro.who.int/health-topics/influenza).

What we — meaning I — have been thinking of as “normal seasonal flu” is potentially much more deadly than I had realized. Between 1976 and 2006, annual influenza-associated deaths “with underlying pneumonia and influenza causes” averaged 6300 in the USA. But what makes flu so dangerous is that it can greatly exacerbate other “underlying” challenges to health; so the number of annual influenza-associated deaths with underlying respiratory and circulatory causes averaged 23,600, ranging in individual years from 3300 to more than 48,000; for instance, nearly 41,000 in 2001-2 and more than 95,000 in the two years 2003-5 (Morbidity and Mortality Weekly Report 59 [2010] # 33).

The substantial mortality of “normal flu” hints at the problem of trying to understand whether what is happening nowadays can or must be properly attributed not to influenza but to a novel strain of a Corona virus. When it is “only” a matter of the flu, of course we do not see the sort of panic that the news currently brings us daily about overwhelmed healthcare systems, lack of protective equipment for caregivers, tragic individual deaths, and so on.

But what I just wrote happens not to be true. It turns out that such rather panicked communal behavior was in fact described in the 2017-18 flu season, with no other virus than influenza being blamed:

“medical centers are responding with extraordinary measures: asking staff to work overtime, setting up triage tents, restricting friends and family visits and canceling elective surgeries, to name a few. . . . The hospital’s urgent-care centers have also been inundated, and . . . outpatient clinics have no appointments available. . . several hospitals have set up large ‘surge tents’ outside their emergency departments to accommodate and treat flu patients. . . . some patients had to be treated in hallways . . . . Nurses are being ‘pulled from all floors to care for them’ . . . . Many nurses have also become sick, however, so the staff is also short-handed. . . ‘More and more patients are needing mechanical ventilation due to respiratory failure . . . .’ (Amanda Macmillan, “Hospitals overwhelmed by flu patients are treating them in tents”, TIME, 18 January, 2018).

Just like now, it seems. Yet I do not recall anything like the present media-wide, nation-wide hysteria accompanying these conditions — even though the death toll being ascribed to CoVID-19 seems unlikely to end up any higher than that attributed to “flu” in 2017/18: the Centers for Disease Control & Prevention (CDC) estimated the number of “influenza-associated” deaths then at 61,000 — which happens to be the same as the current estimated projection for CoVID-19, down from much larger numbers projected a few weeks ago.

The many uncertainties in the 2017-18 estimate are illustrated by the range of the “95% confidence interval”: 46,404 – 94,987 (https://www.cdc.gov/flu/about/burden/2017-2018.htm): not far from 100,000 Americans might have died of flu in that season.

Why did not the mass media as a whole pick up the story about the 2017-18 epidemic after it was published, including on-line, by TIME magazine? Is it just that a novel non-influenza virus thought to have come from China is more newsworthy than “just another bad flu season”?

The last question is, of course, of much less immediate interest than the issue of trying to find out whether the contemporary pandemic really is owing to a novel corona virus originating in China, as opposed to being a misdiagnosed pandemic of “seasonal flu”.

That question may be well-nigh intractable, unanswerable with any degree of certainty, because of many uncertainties that are unlikely ever to be resolved, given the lack of sufficiently specific and genuinely trustworthy data. The reports of mortality from the CDC reflect the data available to them, and there is no obvious other source for such data. The CDC’s publications do not make it possible to specify the actual individual causes of death: deaths of patients suffering from influenza as well as other respiratory diseases and cardiovascular problems are designated “influenza-associated”, and similarly with patients dying of pneumonia, no matter what other than influenza might have been the precipitating cause of the pneumonia.

In the absence of better data than that available from the CDC, we will have to be satisfied with less than demonstrable certainty in seeking to answer the salient question, whether the global pandemic attributed to CoVID-19 might in fact be owing instead to a particularly virulent strain of influenza, or perhaps even some other virus.

But does it really matter, which virus is responsible for what is now happening? After all, the same practical measures — careful personal hygiene, social distancing — would be taken toward trying to limit the spread of whatever the infectious agent is.

In the long run, of course a vaccine could only the effective if it targets the actual cause, but that bridge cannot be crossed now, it lies more than a year in the future.

Irrespective of now or later, though, it does matter very much if we come to believe something about this pandemic that is not true. The consequences of being wrong could do damage in unforeseeable ways far into the future. The inescapable precedent for that is the case of HIV.

More than three decades ago, it came to be almost unanimously but wrongly believed that HIV causes AIDS (for overwhelming proof, see THE CASE AGAINST HIV). Among the consequences have been immeasurable physical and psychological harm to innumerable people; the establishment, as more or less routine medical practice, the use of inevitably toxic substances as though they could kill viruses without killing the host’s cells that the virus uses for its own replication; and the mistaken but widespread belief that testing HIV-positive is in itself proof of active infection with HIV.

That last belief seems to have become generalized to the extent that at present a positive test for “CoVID-19” is accepted without further ado as proof of infection, even as none of the tests have been established as valid in the only way that could be trustworthy, namely, the prior isolation of pure virus direct from an infected individual. How long-lasting the sad consequences of such mistakes can be is illustrated by the fact that no HIV test has yet, after some 35 years, been established as valid for diagnosis of active infection. The mistaken belief concerning HIV has even survived the open fact that a vaccine against HIV had been projected within a couple of years of 1984 but has never eventuated despite much effort.

A very informative and accurate recounting of the HIV blunder, in the context of the “CoVID-19” pandemic, has recently been posted by Celia Farber (“Was the COVID-19 Test meant to detect a virus?”, 7 April 2020).

Posted in consensus, media flaws, medical practices, prescription drugs, science policy, scientific culture, scientism, unwarranted dogmatism in science | Tagged: , , | 2 Comments »

Corona Conumdrums

Posted by Henry Bauer on 2020/04/12

Something seems wrong about the basis for the current panic over “CoVID-19”.

2019-nCoV, the virus that is said to cause CoVID-19 disease, first appeared in Wuhan, China, in December 2019. Within a few months, it had reached in Britain prime minister Boris Johnson and  Prince Charles (but not his wife) , in Russia the health minister, and in Australia Tom Hanks and his wife . According to the interactive online map at the New York Times, this new virus is now present on all continents and on islands large and small, and according to news reports it had also found its way onto cruise ships and warships.
To have spread so rapidly, it must be effectively carried through the air, on the winds, and perhaps through the oceans, as suggested in the Los Angeles Times.
But if this virus has been so widely distributed for several months, why has it caused serious illness in so few places? And why has the continent of Africa been so little affected (see NYT map)?
This seems more like something endemic, that has been around for a long time, like the normal cold or “flu” viruses say, than like a virus that newly jumped from animal to human only last December in Wuhan.
Isn’t there something wrong with the official story?
Moreover, since the virus appeared all over the globe within a few months, how can social distancing prevent it from spreading further?

 

Posted in media flaws, medical practices, politics and science, science is not truth, science policy, scientific culture, scientific literacy, scientism, Uncategorized, unwarranted dogmatism in science | Tagged: | 10 Comments »

Science: Sins of Commission and of Omission

Posted by Henry Bauer on 2019/04/21

What statisticians call a type-I error is a scientific sin of commission, namely, believing something to be true that is actually wrong. A type-II error, dismissing as false something that happens to be true, could be described as a scientific sin of omission since it neglects to acknowledge a truth and thereby makes impossible policies and actions based on that truth.

The history of science is a long record of both types of errors that were progressively corrected, sooner or later; but, so far as we can know, of course, the latest correction may never be the last word, because of the interdependence of superficially different bits of science. If, for instance, general relativity were found to be flawed, or quantum mechanics, then huge swaths of physics, chemistry, and other sciences would undergo major or minor changes. And we cannot know whether general relativity or quantum mechanics are absolutely true, that they are not a type-I error — all we know is that they have worked usefully up to now. Type-II errors may always be hiding in the vast regions of research not being done, or unorthodox claims being ignored or dismissed.

During the era of modern science — that is, since about the 17th century — type-I errors included such highly consequential and far-reaching dogmas as believing that atoms are indivisible, that they are not composed of smaller units. A socially consequential type-I error in the first quarter of the 20th century was the belief that future generations would benefit if people with less desirable genetic characteristics were prevented from having children, whereby tens of thousands of Americans were forcibly sterilized as late as late as 1980.

A type-II error during the second half of the 19th century was the determined belief that claims of alleviating various ailments by electrical or magnetic treatments were nothing but pseudo-scientific scams; but that was corrected in the second half of the 20th century, when electromagnetic treatment became the standard procedure for curing certain congenital failures of bone growth and for treating certain other bone conditions as well.
Another 19th-century type-II error was the ignoring of Mendel’s laws of heredity, which were then re-discovered half a century later.
During the first half of the 20th century, a type-II error was the belief that continents could not have moved around on the globe, something also corrected in the latter part of the 20th century.

 

Science is held in high regard for its elucidation of a great deal about how the world works, and for many useful applications of that knowledge. But the benefits that society can gain from science are greatly restricted through widespread ignorance of and misunderstanding about the true history of science.

Regarding general social and political history, Santayana’s adage is quite well-known, that those who cannot remember the past are condemned to repeat it. That is equally true for the history of science. Since the conventional wisdom and the policy makers and so many of the pundits are ignorant of the fact that science routinely commits sins of both commission and omission, social and political policies continue to be made on the basis of so-called scientific consensus that may quite often be unsound.

In Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth (McFarland 2012), evidence is cited from well-qualified and respectable sources that the mainstream consensus is flawed on quite a number of topics. Some of these are of immediate concern only to scholars and researchers, for example about the earliest settlements of the Americas, or the extinction of the dinosaurs, or the mechanism of the sense of smell. Other topics, however, are of immediate public concern, for instance a possible biological basis for schizophrenia, or the cause of Alzheimer’s disease, or the possible dangers from mercury in tooth amalgams, or the efficacy of antidepressant drugs, or the hazards posed by second-hand tobacco smoke; and perhaps above all the unproven but dogmatic belief that human-generated carbon dioxide is the prime cause of global warming and climate change, and the long-held hegemonic belief that HIV causes AIDS.

The topic of cold nuclear fusion is an instance of a possible type-II error, a sin of omission, the mainstream refusal to acknowledge the strong evidence for potentially useful applications of nuclear-atomic transformations that can occur under quite ordinary conditions.

On these, and on quite a few other matters * as well, the progress of science and the well-being of people and of societies are greatly hindered by the widespread ignorance of the fact that science always has been and will continue to be fallible,   committing sins of both omission and of commission that become corrected only at some later time — if at all.

On matters that influence public policies directly, policy-makers would be greatly helped if they could draw on historically well-informed, technically insightful, and above all impartial assessments of the contemporary mainstream consensus. A possible approach to providing such assistance would be the establishing of a Science Court; see chapter 12 in Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017).

 

—————————————————-

*    Type-I errors are rife in the misapplications of statistics in medical matters, including the testing and approval of new drugs and vaccines; see the bibliography, What’s Wrong with Present-Day Medicine
      For a number of possible type-II errors, see for instance The Anomalist  and the publications of the Society for Scientific Exploration  and the Gesellschaft für Anomalistik

Posted in consensus, funding research, global warming, media flaws, medical practices, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, scientific literacy, scientism, scientists are human, unwarranted dogmatism in science | Tagged: , , , | Leave a Comment »

Aluminum adjuvants, autoimmune diseases, and attempted suppression of the truth

Posted by Henry Bauer on 2019/03/24

An earlier post (Adjuvants — the poisons hidden in some vaccines) described the danger that aluminum adjuvants in vaccines pose, including that they may indeed be associated with a risk of inducing autism. A recent book, How to End the Autism Epidemic,   underscores that risk and exposes what should be the crippling, disqualifying conflicts of interest of one of the most prominent accepted experts on vaccinations. I had learned about this from a splendidly informative article by Celeste McGovern at Ghost Ship Media (Prescription to end the autism epidemic, 17 September 2018).

It turns out that animals as well as human beings have experienced tangible harm from vaccines containing aluminum adjuvants: in particular, sheep. Celeste McGovern has reported about that in other recent posts:
Spanish sheep study finds vaccine aluminum in lymph nodes more than a year after injection, behavioural changes, 3 November 2018; Vaccines induce bizarre anti-social behaviour in sheep, 6 November 2018; Anatomy of a science study censorship, 20 March 2019.

This last piece describes the attempt to prevent the truth about aluminum adjuvants from becoming public knowledge, by pressuring the publisher, Elsevier, to withdraw an already accepted, peer-reviewed article in one of its journals: “Cognition and behavior in sheep repetitively inoculated with aluminum adjuvant-containing vaccines or aluminum adjuvant only”, by Javier Asína et al., published online in Pharmacological Research before being withdrawn. Fortunately there are   nowadays resources on the Internet that make it more difficult for the censors to do their dirty work. One invaluable resource is the Wayback Machine, which too few people seem to know about. In the present case, a PDF of the Asína et al. article, as accepted and published online as “In Press” in Pharmacological Research, is available at ResearchGate.

Elsevier publishes thousands of scientific and medical journals, including in the past some that were actually advertisements written by and paid for by pharmaceutical companies, presented dishonestly and misleadingly as genuine scientific periodicals: Elsevier published 6 fake journals); Elsevier had a whole division publishing fake medical journals).

Elsevier had also engaged in censorship on earlier occasions, in one case to the extent of emasculating a well respected, independent publication, Medical Hypotheses (see Chapter 3, “A Public Act of Censorship: Elsevier and Medical Hypotheses”, in Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth).

If the shenanigans and cover-ups about aluminum adjuvants make an insufficiently alarming horror story,   please look at yet another article by Celeste McGovern: Poisoned in Slow Motion, 1 October 2018:

“Immune-system disease is sweeping the globe. . . . Autoimmune/inflammatory syndrome induced by adjuvants, or ASIA — a wildly unpredictable inflammatory response to foreign substances injected or inserted into the human body . . . . The medical literature contains hundreds of such cases. . . . [with] vague and sundry symptoms — chronic fatigue, muscle and joint pain, sleep disturbances, cognitive impairment, skin rashes and more . . . that . . . share the common underlying trigger of certain immune signaling pathways. Sometimes this low-grade inflammation can smolder for years only to suddenly incite an overt autoimmune disease. . . . Chronic fatigue syndrome (also known as myalgic encephalitis), once a rare “hypochondriac” disorder, now affects millions of people globally and has been strongly associated with markers of immune system dysfunction. . . . One in thirteen American children has a hyperactive immune system resulting in food allergy,4 and asthma, another chronic inflammatory disease of the immune system, affects 300 million people across the globe.5 Severe neurological disorders like autism (which now affects one in 22 boys in some US states) have soared from virtual nonexistence and are also linked to a damaged immune system.”

[4. Pediatrics, 2011; 128: e9-17
5. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2008.
6. Eur J Pediatr, 2014; 173: 33-43]

******************************************************************

These particulars offer further illustrations of the general points that I have been making for some time:

 Science and medicine have become dogmatic wielders of authority through being co-opted and in effect bought out by commercial interests. Pharmaceutical companies are perhaps in the forefront of this takeover, but the influence of other industries should not be forgotten, for instance that of Monsanto with its interest in Genetically Modified products; see Dogmatism in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, Jefferson (NC): McFarland 2012

 Science, research, medicine, are very different things nowadays than they were up to about the middle of the 20th century, and very different from the conventional wisdom about them. Media, policy makers, and the public need an independent, impartial assessment of what science and medicine are said to have established; needed is  a Science Court; see Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

Posted in conflicts of interest, fraud in medicine, fraud in science, legal considerations, media flaws, medical practices, peer review, prescription drugs, science is not truth, scientific culture, scientific literacy, scientism, scientists are human, unwarranted dogmatism in science | Tagged: , , , , , , | Leave a Comment »

 
%d bloggers like this: