Skepticism about science and medicine

In search of disinterested science

Archive for the ‘unwarranted dogmatism in science’ Category

Organized so-called “Skeptics” groups

Posted by Henry Bauer on 2021/08/04

Those of us who have been seriously and open-mindedly interested in such controversial topics as Loch Ness Monsters, UFOs, parapsychology, etc., etc., are quite familiar  with the dogmatic attitudes of individuals and groups that designate themselves as Skeptics. The earliest and iconic such groups were CSICOP: The Committee for the Scientific Investigation of Claims of the Paranormal and its analogous group in Germany, GWUP: Gesellschaft zur Wissenschaftlichen Untersuchung von Parawissenschaften.

When they were first established,  some individuals took seriously the mission statements of investigating scientifically these controversial topics; but as it became clear that these groups aimed not at unbiased investigation but were concerned to ensure that such pseudo-science would not ever find acceptance in the wider society, a few prominent individuals resigned from the groups amid a certain amount of public to and fro. Marcello Truzzi resigned from CSICOP and Edgar Wunder from GWUP.

A wide-ranging  retrospective and updated discussion of the dogmatic character of the so-called “Skeptical”  groups has been published in the Zeitschrift für Anomalistik (Journal of Anomalistics), 21 (2021) issue 1; it is freely available at https://www.anomalistik.de/zeitschrift/inhalt/zfa-21-1 (my thanks to Harry Kriz for this information). It is well worth reading by anyone interested in these matters, and much of the issue is either written in English or accompanied by a translation into English.

 Edgar Wunder writes about past and present and clarifies his own position, which has often been misdescribed. All the commentaries are well worth reading, including an introductory editorial by Gerhard Mayer (Science, faith, faith in science). I was particularly impressed by the brief, cogent, insightful piece by Dean Radin (On pathological skepticism).

Advertisement

Posted in science is not truth, scientism, unwarranted dogmatism in science | Tagged: , , , , , | 3 Comments »

The Loch Ness “Monster”: Its real and important significance

Posted by Henry Bauer on 2021/01/29

Because of my writings about Nessie, the Loch Ness Monster [1], I am periodically approached by various media. Last year I had published [2] the suggestion that the Loch Ness creatures are more plausibly related to sea turtles than to the commonly popular notion of plesiosaurs.

A Scottish journalist came across that article, and for one day something about it and me was featured in every yellow-press newspaper in Britain, and several broadcast media asked for interviews.

The episode reminded me of some of the things that are so wrong with modern mass media.

Their overriding concern is simply to attract an audience. There is no intention of offering that audience any genuinely insightful analysis or context or background information. Media attention span approximates that of Twittering. One television network asked for an instant interview, wanted the best phone-contact number, even offered me compensation — and then never followed up.

I did talk to one Russian and one Spanish station or network, and I tried to point to what the real significance is of the Loch Ness animals, namely, that their existence has been denied by official scientific sources for not much less than a century, demonstrating that official science can be wrong, quite wrong; and while that matters little if at all about Loch Ness, I said, it does matter greatly when official science is wrong about such matters of public importance as HIV/AIDS  or climate change,  about which official science does in fact happen to be wrong [3].

So far, however, my bait about those important matters has not been snapped up.

Misunderstandings about science are globally pervasive, especially not realizing that it is fallible. The consequent unwarranted acceptance of wrong beliefs about HIV and about carbon dioxide demonstrate the need for some institution independent of official science, independent of existing scientific organizations and institutions, to provide fact-checking of contemporary scientific consensuses, an impartial, unbiased, strictly evidence-based assessments of official science. In other words, society sorely needs a Science Court [4].

Misconceptions about science can already be seen as a significant reason for flaws in the announced policies of the new Biden administration, as it places high priority on “combating climate change” and engaging in a “moon shot” to cure cancer: having not learned any lessons from the failure of the war on cancer, or from the fact, obvious in great swaths of the geological literature, that carbon dioxide is demonstrably not the prime cause of global warming since there is no correlation between global temperatures and carbon-dioxide levels in the atmosphere [5], neither over the whole life of the Earth nor over the last couple of centuries.

——————————————————

[1]    The Enigma of Loch Ness: Making Sense of a Mystery, University of Illinois Press, 1986/88; Wipf & Stock reprint, 2012
GENUINE  FACTS about “NESSIE”, THE LOCH NESS “MONSTER”
[2]    “Loch Ness Monsters as Cryptid (Presently Unknown) Sea Turtles”, Journal of Scientific Exploration, 34 (2020) 93-104
[3]    Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012
The Origin, Persistence and Failings of HIV/AIDS Theory, McFarland, 2007
[4]    Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed (McFarland 2017), chapter 12
“The Case for a Science Court”
Science Court: Why and What
[5]    “A politically liberal global-warming skeptic?”
”Climate-change facts: Temperature is not determined by carbon dioxide”

Posted in consensus, fraud in medicine, fraud in science, global warming, media flaws, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, unwarranted dogmatism in science | Tagged: , , , , | 17 Comments »

The Banality of Evil — and modern medical practices

Posted by Henry Bauer on 2021/01/22


”The banality of evil” is a phrase famously used by Hannah Arendt in her description of the trial  of Adolf Eichmann. There has been much argument about what exactly she meant. For me, the insight is that evil is so often unintended, that it can result from perfectly well-intentioned actions.

The root of all evil is wrong belief.

If one believes that the most important thing about a human being is the immortal soul, and that the soul will burn in hell for eternity unless it has accepted what the Holy Roman Catholic Church believes, then obviously one should leave nothing undone in the effort to bring that soul to proper belief, even if that amounts to torturing the immortal soul’s body, even to death.

If one believes that one’s country was defeated and devastated by sabotage perpetrated by Jews, communists, homosexuals, gypsies, and the like, then obviously one should do whatever is necessary to rid the country of those perpetraitors.

 And so on

The human tragedy is that we acquire beliefs according to the environment into which we are born and in which we are raised; and once belief has been acquired, it tends to become increasingly entrenched and increasingly difficult to modify.

The problem for society is how best to ensure that collective public actions are based on correct rather than on wrong beliefs.

Nowadays that is taken to mean that public actions should be based on science.

Unfortunately, the nature of scientific activity is widely and thoroughly misunderstood [1], in particular its fallibility, which results inevitably from the fact that science is carried out by fallible human beings.

That fallibility is well illustrated by the history of medicine, where many past practices are now recognized as having been harmful rather than helpful — drawing out blood in sizable amounts, for example. Nowadays, the excellent intention to base medical practices on sound scientific knowledge has sadly gone wrong in several ways, as a result of beliefs that turn out to be wrong.  One pervasive reason is that statistical associations are taken as indicating cause and effect — an error that is warned against in even the most elementary introductions to statistical analysis.

Several pertinent stories are analyzed in Jeremy Greene’s magisterial Prescribing by Numbers [2].

One story has to do with blood pressure. Life insurance companies required physical examinations. Their accumulated data revealed that on average mortality increased with increasing blood pressure. Now, mortality increases with age; and it happens also that every relevant study has shown that blood pressure too increases naturally with age in otherwise healthy people. The association of blood pressure with mortality is an artefact illustrating the common principle in statistics that when two things, A and B, are each correlated with a third factor, C, then A and B will also show a correlation with one another; even though neither causes the other [3].

The misinterpretation of life-insurance statistics has resulted in contemporary medical practice based on a wrong belief, namely, that it is beneficial is to bring everyone’s blood pressure to a level that is normal only for people in their twenties.

This mistake becomes particularly harmful since the means used to lower blood pressure almost invariably involve administering drugs, though lip service is always paid to advising appropriate diet and exercise as the first resort.

That drug companies are permitted to advertise direct to consumers (among developed countries, only in the USA and New Zealand) means that such practices become so taken-for-granted as to be virtually unquestionable.

Another mistaken belief is that high levels of cholesterol in the blood constitute cardiovascular disease and increased risk of stroke and heart-attack. The corollary misguided belief is that bringing cholesterol levels down by administering statin drugs is beneficial; even though statins hinder the body’s production of coenzyme Q10, which is a necessary component of the energy-producing mechanisms of all cells. Inevitably, therefore, statins induce in muscular weakness, which is officially but quite mistakenly described as a “side” effect; it is a direct effect.

Many well documented books and articles have debunked the cholesterol theory (for example, Kendrick (2007) and Ravnskov (2000) in [4]), without effecting any change in standard practice — although many individuals ignore or defy their doctor’s prescribing of statins.

Not only do modern American medical practices rely on misleading, incompetent statistical analyses, they are based fundamentally on the wrong belief that preventive medicine can be successfully practiced by administering of drugs. This becomes increasingly harmful when those drugs continue to be prescribed as people get older and the steadily cumulating danger from drug “side” effects outweigh any possible benefit from “reducing risk” of one or another ailment [5].

Drug-based treatments are particularly well entrenched because the pharmaceutical industry is hugely profitable in large part because of the profligate prescribing of drugs stimulated by pervasive advertising.

The greatest immediate improvement in prescribing practices would result if the Food and Drug Administration and other regulatory authorities would demand statistically competent and honest protocols for clinical trials, including that outcomes not be assessed as “significant at p ≤ 0.05” but in terms of NNT and NNH: numbers of patients needed to be treated for 1 successful outcome compared to numbers of patients needed to be treated to observe 1 undesired adverse event [6].

That would prevent much harm, for example that now perpetrated by HPV vaccines, which are responsible for the greatest number of officially reported averse events as well as many horrifying anecdotes [7]; while there is no actual proof that HPV causes any cancer at all, HPV having been found guilty only because a few strains (out of many dozens) are often statistically associated with some cancers.

Well intentioned physicians are doing harm because of wrong beliefs, even as dozens of books [4] have exposed the misdeeds and their causes.

Is it not an evil,
 to persuade people to ingest things that do harm
 without any compensating good?

————————————————–

[1]    Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017
[2]    Jeremy Greene, Prescribing by Numbers, Johns Hopkins University Press, 2007
[3]    “Seeking Immortality? Challenging the drug-based medical paradigm”, Journal of Scientific Exploration, 26 (2012) 867-80
[4]    What’s Wrong with Present-Day Medicine
[5]    “When is enough, enough? Stopping medicines in older people”, Best Practices Journal, #27 (April 2010) 6-9; Rushabh J. Dagli & Akanksha Sharma, “Polypharmacy: A global risk factor for elderly people”, Journal of International Oral Health,  6 (#6, 2014) i–ii
[6]    How (not) to measure the efficacy of drugs
[7]    Mary Holland, Kim Mack Rosenberg & Eileen Iorio,  The HPV Vaccine On Trial: Seeking Justice For A Generation Betrayed, Skyhorse, 2018
Documentary: Sacrificial Virgins

Posted in consensus, fraud in medicine, medical practices, prescription drugs, science is not truth, scientific culture, scientists are human, unwarranted dogmatism in science | Tagged: , , | 1 Comment »

The HIV/AIDS blunder: Missed opportunities for mainstream research to self-correct

Posted by Henry Bauer on 2021/01/20

Quite a number of specific mis-steps conspired to the acceptance and continuance of HIV/AIDS theory. They illustrate much of what has gone wrong with science: It is subject to interference by commercial, political, and ideological influences; it is comprised of a variety of institutions that do not interact usefully or reliably. Above all:


 Science has no overarching watchdog to ensure
 that theories change appropriately
 as evidence accumulates

  1. 1.The first and crucial mistake was when the Secretary of Health and Human Services (Margaret Heckler) held a press conference at which Robert Gallo claimed to have discovered the probable cause of AIDS. Illustrated by this sad episode is political interference and the pervasive ignorance of how science works:
    →     Gallo had not yet published anything. Insiders regarded him as incompetent and untrustworthy. Investigative journalism later (2002) fully documented that he is an unscrupulous charlatan [1].
    →     Heckler’s background was as a lawyer and a politically active Republican.
    →     Activists had been campaigning vigorously for the Republican administration to do something about AIDS.
     →    This official endorsement of Gallo’s claim acted as a signal that anyone who wanted research support from the National Institutes of Health (NIH) would likely be successful by proposing to work on HIV; virologists in particular were hungry for funding after their failure to discover cancer-causing viruses in the “war on cancer” [2].
  2. 2.An important contributing factor  was statistical incompetence at the Centers for Disease Control (CDC):
    →     Mistakenly taking “gay” rather than drug abuse as the most meaningful association with AIDS [3]. The CDC should also have been aware  that AIDS-like symptoms had been quite common among addicts during the 1960-70s epidemic of so-called recreational drug use [4].
    →     Initiated the misleading “young, previously healthy, gay men” characterization based on 5 cases aged 29-36, average 32.6 [5]. Its Task Force on Kaposi’s Sarcoma had found the average age of AIDS victims to be 35. When Cochrane [6] re-examined the medical records 20 years later, she found that the average age of the first 25 AIDS patients in San Francisco had been 38. This mattered crucially: The greatest risk for sexual infections is among people <30; lifestyle ailments are increasingly likely at older ages, more compatible with a decade or two of what used to be called dissolute living.
    CDC researchers as early as 1987 failed to recognize the significance of their finding that, among Job Corps  members at ages about 17 and younger, females are more likely to test HIV-positive than males [7].
  3. 3.The Army HIV Research Office also failed to recognize the significance of their finding that at ages about 17 and younger, females are more likely to test HIV-positive than males [8].
  4. 4.Duesberg had published comprehensive debunkings of HIV in 1987 [9] and 1989 [10]. The latter  has a footnote promising a rebuttal from Gallo that never eventuated, despite several reminders [11: 233].
  5. 5.As the years went by, more and more conundrums emerged whose significance was missed:
    →     The purple skin-patches of Kaposi’s Sarcoma had been the iconic signature of AIDS,  yet after half-a-dozen years they had become rare among AIDS patients.
    →     The correlation between drug abuse and AIDS became stronger and stronger.
    →     Prostitutes who did not use drugs were not at risk of  becoming HIV-positive.
    →     Drug abusers who used clean needles would more likely to test HIV-positive than those who exchanged needles.
    →     Marriage and pregnancy are risk factors for testing HIV-positive.
    →     Many further instances, with primary sources cited also for the points above, see The Case against HIV

Lessons:

The clearest general lesson is that policymakers and administrators should not take far-reaching actions on matters of science or medicine without advice from individuals who have at least an elementary acquaintance with the history of science and the understanding of present-day scientific activity incorporated in Science and Technology Studies (STS [12]). Anyone with that background would be familiar with the danger of accepting any scientific claim made by an individual researcher or administrator of research before the claim had even been published. The training of most scientists and most doctors neglects that important background.

A fairly general lesson is that competence in statistics may be sorely lacking even in an agency like CDC where gathering and analyzing statistical data is a central task. Much has been written during the last several decades about the pervasive abuse and misuse of statistics in medicine and medical science [13].

It is also not irrelevant that an overwhelming of proportion of those who were carrying out and reporting HIV tests were medical doctors, MDs or DVMs, rather than people trained in research. This is not to discount and the insights of the many MDs who have been able to learn from experience and to transcend some of the mistaken lore they were originally taught [14]. But medical training focuses on applying what is known, not on questioning it. By contrast,  journalists who were covering the HIV/AIDS story [1, 15] had a more holistic mindset and noticed how inadequate the officially accepted view is.

A part of understanding what contemporary scientific or research activity involves is to recognize that the overwhelming proportion of individuals doing what is loosely called “research” or “science”  are not engaged in seeking fundamental truths. Most of the published reports on HIV testing were based on taking for granted that HIV causes AIDS and gathering data for other purposes, say, recruitment into the Armed Forces, or the presumed need of for antiviral drugs in different regions of Africa; so those “researchers” had been blind to  the steady accumulation of data incompatible with the view of HIV as a contagious infection.

Present-day institutions of medical science
are incapable of self-correcting a mistaken “consensus”

That is why society needs a Science Court

***************************************************************************

[1]    John Crewdson, Science Fictions: A scientific mystery, a massive cover-up and the dark legacy of Robert Gallo, Little, Brown, 2002
[2]    Peter Duesberg, Inventing the AIDS Virus, Regnery, 1996; chapter 4
[3]    John Lauritsen, “CDC’s tables obscure AIDS-drug connection”, Philadelphia Gay News, 14 February 1985 (and five other papers); reprinted as chapter I in The AIDS war: propaganda, profiteering and genocide from the medical-industrial complex, ASKLEPIOS, 1993
[4]    Neville Hodgkinson, AIDS: The Failure of Contemporary Science, Fourth Estate, 1996
[5]    Pneumocystis Pneumonia — Los Angeles, Morbidity and Mortality Weekly Report, 30 (#21, 5 June 1981.) 250-52
[6]    Michelle Cochrane, When AIDS began: San Francisco and the Making of an Epidemic, Routledge, 2004
[7]    Michael E. St. Louis, George A. Conway, Charles R. Hayman, Carol Miller, Lyle R. Petersen, Timothy J. Dondero,  “Human Immunodeficiency Virus Infection in Disadvantaged Adolescents: Findings From the US Job Corps”, JAMA, 266
(1991): 2387-91;  Fig. 4 [authors’ training: 5 MD, 1 RN]
 [8]   John F. Brundage, Donald S. Burke, Robert Visintine, Michael Peterson, Robert R. Redfield. “HIV Infection among young adults in the New York City area”, New York State Journal of Medicine, May 1988, 232-33; Fig. 3 [authors’ training: 5 MD, 1 DVM]
Donald S. Burke, John F. Brundage, Mary Goldenbaum, Lytt I. Gardner, Michael Peterson, Robert Visintine, Robert R. Redfield, & the Walter Reed Retrovirus Research Group, “Human Immunodeficiency Virus Infections in Teenagers: Seroprevalence Among Applicants for US Military Service”, JAMA, 263 (1990) 2074-77; Table 1 [authors’ training: 4 MD, 1 DVM, 1 MS, 1 PhD]
Burke, D. S., J. F. Brundage, J. R. Herbold, W. Berner,  L. I. Gardner, J. D. Gunzenhauser,  J. Voskovitch, & R. R. Redfield, “Human immunodeficiency virus infections among civilian applicants for United States military service, October 1985 to March 1986”, New England Journal of Medicine, 317 (1987) 131-36; Fig 1 [authors’ training: 5 MD, 1 PhD, 1 DVM]
[9]    Peter H. Duesberg, “Retroviruses as carcinogens and pathogens: expectations and reality”, Cancer Research, 47 (1987) 1199-220
[10]  Peter H. Duesberg, “Human immunodeficiency virus and acquired immunodeficiency syndrome: correlation but not causation”, Proceedings of the National Academy of Sciences, 86 (1989) 755-64.
[11]  Henry H. Bauer, The Origin, Persistence and Failings of HIV/AIDS Theory, McFarland, 2007
[12]  “STS draws on the full range of disciplines in the social sciences and humanities to examine the ways that science and technology shape, and are shaped by, our society, politics, and culture. We study contemporary controversies, historical transformations, policy dilemmas, and broad philosophical questions” (Department of Science, Technology, and Society at Virginia Tech)
[13]  Illustrated in many of the books cited in What’s Wrong with Present-Day Medicine
but see particularly the cited articles by Altman, Ioannidis, Matthews
[14]  See for example in the books listed in [13] those by Angell, Brody, Goldacre, Gøtzsche, Greene, Kendrick, LeFanu, Ravnskov, Smith
[15]      See books by Farber, Hodgkinson, Leitner, Shenton, in The Case against HIV

Posted in consensus, fraud in medicine, funding research, media flaws, medical practices, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, Uncategorized, unwarranted dogmatism in science | Tagged: | Leave a Comment »

From uncritical about science to skeptical about science, 6: HIV/AIDS is a blunder!

Posted by Henry Bauer on 2021/01/16


Why now so obvious to me while officialdom remains misled?

This series of blog posts aims to help me understand why I and many other individuals came to see the obvious while the mainstream community failed and still fails to recognize the facts. The HIV/AIDS episode also illustrates how wrong is the popular view of science, for example that it is self-correcting.

The obvious evidence that HIV does not cause AIDS is set out in several places:
Ø     A book published in 2007 [1]  incorporating details set out in several earlier articles [2, 3-5]; the first of these [2] is already quite comprehensive.
Ø     Blog posts with further illustrating examples and responses to comments and criticisms [6].
Ø     A book chapter describing how I came to analyze the evidence and become frustratedly crankish as a result [7].
Ø     A website, The Case against HIV, cites >900 chiefly peer-reviewed mainstream publications, organized to make it easy to find detailed answers on specific points about HIV and AIDS. 

How the theory nevertheless became accepted and entrenched is described in Part III of my book [1].

My journey to realizing that HIV does not cause AIDS  was unique:
Ø      Long-standing interest in scientific controversies, always on the lookout for new cases to study.
Ø      Learning by chance in early 1990s that HIV/AIDS had been controversial in the past.
Ø      Learning that HIV had supposedly entered into United States  at the earliest in the late 1970s, among gay men  in large cities: Los Angeles, New York, San Francisco.
Ø      Chancing (around 2003) on an assertion that among potential Army recruits in  the mid-1980s, female and male teenagers all over the country had tested HIV-positive at about the same rate: impossible, according to the previous point.
Ø      Pedantic obsession with fact-checking: determined to check that assertion, whether it was perhaps a mis-citation, led to  collating all available data from HIV tests.
Ø      Familiarity with the history of science as a succession of mistaken consensuses later corrected; any majority consensus can quite often be wrong, especially contemporary or recent ones.
Ø      Familiarity, largely through participation in the Society for Scientific Exploration, with the fact that the majority consensus in science suppresses minority views ruthlessly and indiscriminately.
Ø      Having available the considerable needed time through being retired, but still with easy access to a research library.
Ø      More general background: As a research chemist, taking as axiomatic that there is no satisfactory substitute for perpetually subjecting theories to the test of factual evidence.

No doubt the journeys by which other people had reached the same understanding were also unique. Certainly it was different than mine for those who were there at the beginning of the AIDS era, or for the several investigative journalists who saw at first hand that theory does not match reality (see Crewdson, Farber, Hodgkinson, Shenton in The Case against HIV).

How to enable the rest of society to shed the mistaken view about HIV/AIDS? How to question a matter that has been taken for granted by officialdom around the world for more than two decades and is still supported by the consensus in the medical-scientific community?
Ø      Once a belief has become generally taken for granted, including in medicine and in science, self-correction becomes increasingly unlikely. A following blog post will cite some of the missed opportunities for self-correction over HIV/AIDS.
Ø      Any questioning of the belief is likely to be ignored, or dismissed as crankish, Flat-Earther-ish, by media and pundits as well as the majority consensus.

That’s why something like a Science Court is needed; see “Science Court: Why and What” and chapter 12 in [8].

A Court is necessary because the majority consensus refuses to engage substantively with dissenters. The Court would serve to force public engagement among the disagreeing technical experts. As the consensus and the dissenters are made to present their arguments and their evidence openly, publicly, and to defend them under cross-examination, the points of disagreement would be identified and clarified; in the case of HIV/AIDS, the truth would become obvious.

—————————————————-

[1]    The Origin, Persistence and Failings of HIV/AIDS Theory,
McFarland, 2007
[2]    Is HIV really the cause of AIDS?, The Anomalist, 11 (2003) 19-21
[3]    Demographic Characteristics of HIV: I. How Did HIV Spread?
Journal of Scientific Exploration, 19 (2005) 567–603;
erratum, ibid., 20 (2006) 95
Demographic Characteristics of HIV: II. What Determines the
Frequency of Positive HIV Tests?
Journal of Scientific Exploration, 20 (2006) 69—94
Demographic Characteristics of HIV: III. Why Does HIV
Discriminate by Race?
Journal of Scientific Exploration, 20 (2006) 255–88
 [4]   The mystery of HIV/AIDS, Quadrant, July-August 2006, 61-3.
[5]   Questioning HIV/AIDS: Morally Reprehensible or Scientifically Warranted? Journal of American Physicians and Surgeons, 12 (#4, Winter 2007) 116-120
[6]    HIV Skeptic
[7]    Confession of an “AIDS denialist”: How I became a crank because we’re being lied to about HIV/AIDS, pp. 378- 82 in You Are STILL Being Lied To — The REMIXED Disinformation Guide to Media Distortion, Historical Whitewashes and Cultural Myths, ed. Russ Kick (Disinformation Co., NY, 2009)
[8]     Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

Posted in consensus, medical practices, resistance to discovery, science is not truth, science policy, scientific culture, scientists are human, unwarranted dogmatism in science | Tagged: , , | 2 Comments »

From uncritical about science to skeptical about science: 5

Posted by Henry Bauer on 2021/01/09

Learning from what science ignores — within science as well as outside

The Society for Scientific Exploration (SSE) had been founded at the start of the 1980s by scientists, engineers, and other scholars who believed that there was sufficient substantive evidence, enough sheer facts, to warrant proper scientific investigation of topics ignored by science or dismissed as fictive, existing not in Nature’s reality but only in human imaginations: psychic phenomena; flying saucers or UFOs (Unidentified Flying Objects); cryptozoology — animals unknown to biology, or extinct animals said to be still extant; as well as such heretical views as that the theory of relativity is unsound [1].

Being ignored in the face of apparently good evidence was the shared bond within SSE. Few if any of us shared belief in the reality of all the topics that one or more members favored. I certainly didn’t. In fact, I soon began wondering how it was that so many competent, accomplished, intelligent, highly educated, cosmopolitan people could believe firmly in things that seemed to me highly implausible, at best doubtful.

The next insight followed naturally: My new colleagues surely wondered how I, a successful  chemist and cosmopolitan Dean of Arts and Sciences, could firmly believe in the reality of the Loch Ness Monster.

My fascination over that had begun through random chance, a book picked up and riffled through. No doubt something analogous, some unplanned experience, had set my new colleagues off on their particular interests.

There is an important general point to be made here. Scientists characteristically have an intellectual blind spot — certainly I do: imagining that beliefs are created by factual knowledge, remain held because of factual evidence, and can be changed by new facts. That is simply not the case.
Interest or some other stimulus is crucial. Why does one ever seek facts in some specific direction?
Everyone would likely look for reliable knowledge about something pertinent to health, family matters, earning a living; but it can also happen by chance, by happening upon a book picked up at random. So there is no reason why others should find interest where I happen to.

And it is not sufficient that good and respected friends and colleagues urge one to look at the facts. I have maintained only an observer’s interest in most of the matters that absorb others in the Society. Even though I’d quite like to know enough to warrant having an informed opinion, the problem is the sheer amount of time and effort needed to wade through all the claims and counterclaims before reaching a reasonably firm belief or disbelief. Outside chemistry, I’ve looked in enough detail at only three major controversial topics: Loch Ness Monsters, HIV/AIDS, and global warming (or climate-change).

That there are a great variety of different specialized interests in the Society for Scientific Exploration was not a disturbing factor. We talked (and wrote and published [2]) about our interests and claimed facts and speculations, and benefited from constructive mutual criticism, sometimes quite incisive.  Frustration at the lack of interest from mainstream science was and remains an overwhelmingly strong bond. A corollary is something like shared disdain for the individuals and groups who wage public campaigns about the purported dangers to society of believing in the reality of UFOs, Bigfoot, psychic phenomena and the like [3]. Those activists, who purport to be supporters and defenders of science, typically describe themselves as Skeptics [4], a grossly misleading misnomer since they are dogmatists of the highest order, unwilling to contemplate that official or mainstream science might be wrong in any particular — a stance that ignores the whole history of science.
To my mind, the real danger to society stems from such arrogantly dogmatic groups which insist that everyone share their particular beliefs, as is all too commonly the case with specific religions or, in this case, scientism, the religious faith that science be acknowledged as the sole authoritative source of knowledge and understanding.
These “Skeptics” (Truzzi famously and aptly called them “pseudo-skeptics”) criticize the topics of interest within SSE as pseudo-science, but SSE advocates scientific exploration, seeking the best available facts about Nature and trying to explain and understand them. SSE has quarrels not with “science” but with the too-many career scientists who behave unscientifically in forming opinions without looking at the facts, and then defend those opinions dogmatically.

When I analyzed the Velikovsky Affair [5], what had then most struck me was how incompetently the scientific community had criticized Velikovsky’s pseudo-science, and how little so many scientists seemed to understand what science is really about. Several decades later, having written articles and books about the prevalence of dogmatism in science [6], I can see in retrospect that I had overlooked or not noticed or missed the significance of how insufferably dogmatic the criticisms of Velikovsky had been. Yet that dogmatism was far from a minor part of the Affair; it surely played some part in bringing some social scientists and humanists to rally to Velikovsky’s defense.

The Society for Scientific Exploration also led to my learning about the extent of dogmatism within mainstream science. The society offered a forum not only for topics dismissed as pseudoscience, we also heard at times about  the suppression of unorthodox views within mainstream science. For example, Thomas Gold was widely acknowledged and applauded for his original insights in astrophysics, but mainstream science wanted nothing to do with his ideas about the origin of what are said to be fossil fuels in the Earth  and about life having originated deep in the earth rather than in warm ponds on its surface [7]. Gold also favored the steady-state theory of the cosmos rather than the accepted paradigm of the Big Bang. Halton Arp, an observational astronomer, published data that support the steady-state theory, whereupon mainstream science refused to allow him further access it to the telescopes he needed [8]. A variety of observations indicate that earthquakes may be predictable by electromagnetic or other signals, but mainstream geology will have none of it [9]. “Cold fusion” remains beyond the pale despite intriguing evidence from competent mainstream researchers [10].

I learned that even distinguished mainstream researchers who take a distinctly different view from the prevailing majority consensus are treated no better than are those of us accused of espousing pseudo-science, in fact they often have it worse: their unorthodoxies can damage their career, whereas most members of SSE earn their living by something quite separate from their oddball interests, which are more hobbies, things pursued in amateur fashion, out of sheer fascination and not as a way to earn a living.

So Loch Ness Monsters led me to SSE and SSE led me to recognize how widespread throughout mainstream science is the passionately dogmatic, even vindictive suppression of minority opinion [6] — quite contrary to the popular view of science, the idealistic view that remains my own vision of how science should be carried on.

It seemed natural, then, in my new academic career in STS, to make my special interest the study of scientific controversies and of what exactly distinguishes genuine proper science from what is widely denigrated as fringe, alternative, or pseudo science [1].
My research focus required looking for examples of scientific controversies to study. I don’t recall what first alerted me that there was dissent from the belief that HIV causes AIDS, that there was ever any controversy about it, but I did come across that in the early 1990s.
That is what eventually taught me that what taken-as-authoritative institutions nowadays proclaim in the name of science should never be automatically trusted; it should be fact-checked. The dogmatism, careerism, and institutional as well as personal conflicts of interest that are now rampant in contemporary science have actually brought official public policies and actions that are contrary to the facts of reality, have harmed massive numbers of people, and threaten to cause yet further damage.

—————————————————————————————————–

[1]    Science or Pseudoscience: Magnetic Healing, Psychic Phenomena, and Other Heterodoxies, University of Illinois Press 2001
[2]    The Journal of Scientific Exploration began publication in 1987. It is now freely available on-line
[3]    Examples are discussed and critiqued at p. 200 ff. in [1]
[4]    The iconic organization was CSICOP (Committee for Scientific Investigation of Claims of the Paranormal), founded in 1976 by predominantly non-scientists (philosophers, psychologists, writers, amateur investigators) but including a few prominent scientists, for example Carl Sagan; it publishes Skeptical Inquirer and includes under matters criticized as “paranormal”, claims of the existence of what would be perfectly natural creatures
[5]    Beyond Velikovsky: The History of a Public Controversy, University of Illinois Press, 1984
[6]    Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland,  2012
[7]    Fuel’s Paradise
[8]    Halton Arp, Quasars, Redshifts and Controversies, Interstellar Media, 1987; Seeing Red: Redshifts, Cosmology and Academic Science, Apeiron, 1998
[9]    On earthquake prediction, but more generally about matters that global tectonics (“continental drift”) does not adequately explain, see the NCGT Journal
[10]  The topic is nowadays thought to be not the fusion originally inferred but the general phenomenon of Low Energy Nuclear Reactions (LENR), nuclear transformations at ordinary temperatures

Posted in conflicts of interest, denialism, global warming, medical practices, science is not truth, science policy, scientific culture, scientism, unwarranted dogmatism in science | Tagged: , , , , , | 2 Comments »

The misleading popular myth of science exceptionalism

Posted by Henry Bauer on 2020/12/28

Human beings are fallible; but we suppose the Pope to be infallible on spiritual matters and science to be exceptional among human endeavors as correctly, authoritatively knowledgeable about the workings of the material world. Other sources purporting to offer veritable knowledge may be fallible — folklore, history, legend, philosophy — but science can be trusted to speak the truth.

Scholars have ascribed the infallibility of science to its methodology and to the way scientists behave. Science is thought to employ the scientific method, and behavior among scientists is supposedly described by the Mertonian Norms. Those suppositions have somehow seeped into the conventional wisdom. Actually, however, contemporary scientific activity does not proceed by the scientific method, nor do scientists behave in accordance with the Mertonian Norms. Because the conventional wisdom is so wrong about how science and scientists work, public expectations about science are misplaced, and public policies and actions thought to be based on science may be misguided.

Contemporary science is unrecognizably different from the earlier centuries of modern science (commonly dated as beginning around the 16th century). The popular view was formed by those earlier times, and it has not yet absorbed how radically different the circumstances of scientific activities have become, increasingly since the middle of the 20th century.

Remarkable individuals were responsible for the striking achievements of modern science that brought science its current prestige and status; and there are still some remarkably talented people among today’s scientists. But on the whole, scientists or researchers today are much like other white-collar professionals [1: p. 79], subject to conflicts of interest and myriad annoyances and pressures from patrons and outside interests; 21st century “science” is just as interfered with and corrupted by commercial, ideological, and political forces as are other sectors of society, say education, or justice, or trade.

Modern science developed through the voluntary activities of individuals sharing the aim of understanding how Nature works. The criterion of success was that claimed knowledge be true to reality. Contemporary science by contrast is not a vocation carried on by self-supporting independent individuals; it is done by white-collar workers employed by a variety of for-profit businesses and industries and not-for-profit colleges, universities, and government agencies. Even as some number of researchers still genuinely aim to learn truths about Nature, their prime responsibility is to do what their employers demand, and that can conflict with being wholeheartedly truthful.

The scientific method and the Mertonian Norms
 do not encompass the realities of contemporary science

The myth of the scientific method has been debunked at book length [2]. It should suffice, though, just to point out that the education and training of scientists may not even include mention of the so-called scientific method.

I had experienced a bachelor’s-degree education in chemistry, a year of undergraduate research, and half-a-dozen years of graduate research leading to both a master’s degree and a doctorate before I ever heard of “the scientific method”. When I eventually did, I was doing postdoctoral research in chemistry (at the University of Michigan); and I heard of “the scientific method” not from my sponsor and mentor in the Chemistry Department but from a graduate student in political science. (Appropriately enough, because it is the social and behavioral sciences, as well as some medical doctors, who make a fetish of claiming to follow the scientific method, in the attempt to be granted as much prestige and trustworthiness as physics and chemistry enjoy.)

The scientific method would require individuals to change their beliefs readily whenever the facts seem to call for it. But everything that psychology and sociology can agree on is that it is very difficult and considerably rare for individuals or groups to modify a belief once it has become accepted. The history of science is consonant with that understanding: New and better understanding is persistently resisted by the majority consensus of the scientific community for as long as possible [3, 4]; pessimistically, in the words of Max Planck, until the proponents of the earlier belief have passed away [5]; as one might put it, science progresses one funeral at a time.

The Mertonian norms [6], too, are more myth than actuality. They are, in paraphrase:

Ø     Communality or communalism (Merton had said “communism”): Science is an activity of the whole scientific community and it is a public good — findings are shared freely and openly.
Ø      Universalism: Knowledge about the natural world is universally valid and applicable. There are no separations or distinctions by nationality, religion, race, sex, etc.
Ø      Disinterestedness: Science is done for the public good, not for personal benefit; scientists seek to be impartial, objective, unbiased, not self-serving.
Ø      Skepticism: Claims and reported findings are subject to critical appraisal and testing throughout the scientific community before they can be accepted as proper scientific knowledge.

As with the scientific method, these norms suggest that scientists behave in ways that do not come naturally to human beings. Free communal sharing of everything might perhaps have characterized human society in the days of hunting and foraging [7], but it was certainly not the norm in Western society at the time of the Scientific Revolution and the beginnings of modern science. Disinterestedness is a very strange trait to attribute to a human being, voluntarily doing something without having any personal interest in the outcome; at the very least, there is surely a strong desire that what one does should be recognized as the good and right way to do things, as laudable in some way. Skepticism is no more natural than is the ready willingness to change beliefs demanded by the scientific method.

As to universalism, that goes without saying if claimed knowledge is actually true, it has nothing to do with behavior. If some authority attempts to establish something that is not true, it just becomes a self-defeating, short-lived dead end like the Stalinist “biology” of Lysenko or the Nazi non-Jewish “Deutsche Physik” [8].

Merton wrote that the norms, the ethos of science, “can be inferred from the moral consensus of scientists as expressed in use and wont, in countless writings on the scientific spirit and in moral indignation directed toward contraventions of the ethos” [6]. That falls short of claiming to have found empirically that scientists actually behave like that for the inferred reasons.

Merton’s norms are a sociologist’s speculation that the successes of science could only have come if scientists behaved like that; just as “the scientific method” is a philosophers’ guess that true knowledge could only be arrived at if knowledge seekers proceeded like that.

More compatible with typical human behavior would be the following:

Early modern science became successful after the number of people trying to understand the workings of the natural world reached some “critical mass”, under circumstances in which they could be in fairly constant communication with one another. Those circumstances came about in the centuries following the Dark Ages in Europe. Eventually various informal groups began to meet, then more formal “academies” were established (of which the Royal Society of London is iconic as well as still in existence). Exchanges of observations and detailed information were significantly aided by the invention of inexpensive printing. Relatively informal exchanges became more formal, as Reports and Proceedings of Meetings, leading to what are now scientific journals and periodicals (some of which still bear the time-honored title of “Proceedings of . . .).

Once voluntary associations had been established among individuals whose prime motive was to understand Nature, some competition, some rivalry, and also some cooperation will have followed automatically. Everyone wanted to get it right, and to be among the first to get it right, so the criterion for success was the concurrence and approval of the others who were attempting the same thing. Open sharing was then a matter of self-interest and therefore came naturally, because one could obtain approval and credit only if one’s achievements were known to others. Skepticism was provided by those others: one had to get it right in order to be convincing. There was no need at all for anyone to be unnaturally disinterested. (This scenario is essentially the one Michael Polanyi  described by the analogy of communally putting together a jigsaw puzzle [2: pp. 42-44, passim; 9].)

Such conditions of free, voluntary interactions among individuals sharing the sole aim of understanding Nature, something like a intellectual free-market conditions, simply do not exist nowadays; few if any researchers can be self-supporting, independent, intellectual entrepreneurs, most are employees and thereby beholden to and restricted by the aims and purposes of those who hold the purse-strings.

Almost universally nowadays, the gold standard of reliability is thought to be “the peer-reviewed mainstream literature”. But it would be quite misleading to interpret peer review as the application of organized skepticism, “critical appraisal and testing throughout the scientific community”. As most productive researchers well know, peer review does not guarantee the accuracy or objectivity or honesty of what has passed peer-review. In earlier times, genuine and effective peer-review took place by the whole scientific community after full details of claimed results and discoveries had been published. Nowadays, in sharp contrast, so called peer-review is carried out by a small number of individuals chosen by journal editors to advise on whether reported claims should even be published. Practicing and publishing researchers know that contemporary so-called peer-review is riddled with bias, prejudice, ignorance and general incompetence. But even worse than the failings of peer review in decisions concerning publication is the fact that the same mechanism is used to decide what research should be carried out, and even how it should be carried out [1: pp. 106-9, passim].

Contemporary views of science, and associated expectations about science, are dangerously misplaced because of the pervasive mistaken belief that today’s scientific researchers are highly talented, exceptional individuals in the mold of Galileo, Newton, Einstein, etc.,  and that they are unlike normal human beings in being disinterested, seeking only to serve the public good, disseminating their findings freely, self-correcting by changing their theories whenever the facts call for it, and perpetually skeptical about their own beliefs.

Rather, a majority consensus nowadays exercises dogmatic hegemony, insisting on theories contrary to fact on a number of  topics, including such publicly important ones as climate-change and HIV/AIDS [10].

————————————————-

[1]    Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017
[2]    Henry H. Bauer, Scientific Literacy and Myth of the Scientific Method, University of Illinois Press, 1992;
“I would strongly recommend this book to anyone who hasn’t yet heard that the scientific method is a myth. Apparently there are still lots of those folks around”
(David L. Goodstein, Science, 256 [1992] 1034-36)
[3]    Bernard Barber, “Resistance by scientists to scientific discovery”,
 Science, 134 (1961) 596-602
[4]    Thomas S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1970 (2nd ed., enlarged ; 1st ed. 1962)
[5]    Max Planck, Scientific Autobiography and Other Papers, 1949; translated from German by Frank Gaynor, Greenwood Press, 1968
[6]    Robert K. Merton, “The normative structure of science” (1942); pp. 267–78 in The Sociology of Science (ed. N. Storer, University of Chicago Press, 1973)
[7]    Christopher Ryan & Cacilda Jethá, Sex at Dawn: The Prehistoric Origins of Modern Sexuality, HarperCollins, 2010
[8]    Philipp Lenard, Deutsche Physik, J. F. Lehmann (Munich), 1936
[9]    Michael Polanyi, “The Republic of Science: Its political and economic theory”,
Minerva, I (1962) 54-73
[10]  Henry H. Bauer, Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

Posted in conflicts of interest, consensus, funding research, media flaws, peer review, politics and science, resistance to discovery, science is not truth, scientific culture, scientism, scientists are human, the scientific method, unwarranted dogmatism in science | Tagged: , | 1 Comment »

Science Court: Why and What

Posted by Henry Bauer on 2020/12/16

The idea for what has come to be called a Science Court was proposed half a century ago by Arthur Kantrowitz [1].

The development of nuclear reactors as part of the atom-bomb project made it natural to contemplate the possibility of generating power for civil purposes by means of nuclear reactors (the reactor at Hanford that made plutonium for the Nagasaki bomb was also the first full-scale nuclear reactor ever built [2]).

The crucial question was whether power-generating nuclear reactors could be operated safely. The technical experts were divided over that, and Kantrowitz proposed that an “Institution for Scientific Judgment” was needed to adjudicate the opposing opinions.

In those years, scientific activity was still rather like in pre-WWII times: A sort of ivory-tower cottage industry of largely independent intellectual entrepreneurs who shared the aim of learning how the material world works. Mediating opposing opinions could then seem like a relatively straightforward matter of comparing data and arguments. Half a century later, however, scientific activity has pervaded business, commerce, and medical practices, and research has become intensely competitive, with cutthroat competition for resources and opportunities for profit-making and achieving personal wealth and influence. Conflicts of interest are ubiquitous and inescapable [3]. Mediating opposing technical opinions is now complicated because public acceptance of a particular view has consequences for personal and institutional power and wealth; deciding what “science” truly says is hindered by personal conflicts of interest, Groupthink, and institutional conflicts of interest.

Moreover, technical disagreements nowadays are not between more or less equally placed technical experts; they are between a hegemonic mainstream consensus and individual dissenters. The consensus elite controls what the media and the public learn about “science”, as the “consensus” dominates “peer review”, which in practice determines all aspects of scientific activity, for instance the allocation of positions and research resources and the publication (or suppression) of observations or results.

It has become quite common for the mainstream consensus to effectively suppress minority views and anomalous research results, often dismissing them out of hand, not infrequently labeling them pejoratively as denialist or flat-earther crackpot [4]. Thereby the media, the public, and policymakers may not even become aware of the existence of competent, plausible dissent from a governing consensus.

The history of science is, however, quite unequivocal: Over the course of time, a mainstream scientific consensus may turn out to be inadequate and to be replaced by previously denigrated and dismissed minority views.

Public actions and policies might bring about considerable damage if based on a possibly mistaken contemporary scientific consensus. Since nowadays a mainstream consensus so commonly renders minority opinions invisible to society at large, some mechanism is needed to enable policymakers to obtain impartial, unbiased, advice as to the possibility that minority views on matters of public importance should be taken into consideration.

That would be the prime purpose of a Science Court. The Court would not be charged with deciding or declaring what “science” truly says. It would serve just to force openly observed substantive engagement among the disagreeing technical experts — “force” because the majority consensus typically refuses voluntarily to engage substantively with dissident contrarians, even in private.

In a Court, as the elite consensus and the dissenters present their arguments and their evidence, points of disagreement would be made publicly visible and also clarified under mutual cross-examination. That would enable lay observers — the general public, the media, policymakers — to arrive at reasonably informed views about the relative credibility of the proponents of the majority and minority opinions, through noting how evasive or responsive or generally confidence-inspiring they are. Even if no immediate resolution of the differences of opinion could be reached, at least policymakers would be sufficiently well-informed about what public actions and policies might plausibly be warranted and which might be too risky for immediate implementation.

A whole host of  practical details can be specified only tentatively at the outset since they will likely need to be modified over time as the Court gains experience. Certain at the beginning is that public funding is needed as well as absolute independence, as with the Supreme Court of the United States. Indeed, a Science Court might well be placed under the general supervision of the Supreme Court. While the latter might not at first welcome accepting such additional responsibilities, that might change since the legal system is currently not well equipped to deal with cases where technical issues are salient [5]. For example, the issue of who should be acceptable as an expert technical witness encounters the same problem of adjudicating between a hegemonic majority consensus and a number of entirely competent expert dissenters as the problem of adjudicating opposing expert opinions.

Many other details need to be worked out: permanent staffing of the Court as well as temporary  staffing for particular cases; appointment or selection of advocates for opposing views; how to choose issues for consideration; the degree and type of authority the Court could exercise, given that a majority consensus would usually be unwilling to engage voluntarily with dissidents. These questions, and more, have been discussed elsewhere [6]. As already noted, however, if a Science Court is actually established, its unprecedented nature would inevitably make desirable progressive modification of its practices in the light of accumulating experience.

————————————————-

[1]    Arthur Kantrowitz, “Proposal for an Institution for Scientific Judgment”, Science, 156 (1967) 763-64

[2]    Steve Olson, The Apocalypse Factory, W. W. Norton, 2020

[3]    Especially chapter 1 in Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

[4]    Henry H. Bauer, Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

[5]    Andrew W. Jurs, “Science Court: Past proposals, current considerations, and a suggested structure”, Drake University Legal Studies Research Paper Series, Research Paper 11–06 (2010); Virginia Journal of Law and Technology, 15 #1

[6]    Chapter 12 in Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

Posted in conflicts of interest, consensus, denialism, funding research, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, scientism, unwarranted dogmatism in science | Tagged: , | 2 Comments »

Can science regain credibility?

Posted by Henry Bauer on 2020/12/09

Some of the many critiques of contemporary science and medicine [1] have suggested improvements or reforms: among them, ensuring that empiricism and fact determine theory rather than the other way around [2]; more competent application of statistics; awareness of biases as a way of decreasing their influence [1, 2, 3].

Those suggestions call for individuals in certain groups, as well as those groups and institutions as a whole, to behave differently than they have been behaving: researchers, editors, administrators, patrons; universities, foundations, government agencies, and commercial sponsors of research.

Such calls for change are, however, empty whistling in the wind if not based on an understanding of why those individuals and those groups have been behaving in ways that have caused science as a whole to lose credibility — in the eyes of much of the general public, but not only the general public: a significant minority of accomplished researchers and other informed insiders have concluded that on any number of topics the mainstream “consensus” is flawed or downright wrong, not properly based on the available evidence [4].

It is a commonplace to remark that science displaced religion as the authoritative source of knowledge and understanding, at least in Western civilization during the last few centuries. One might then recall the history of religion in the West, and that corruption of its governing institutions eventually brought rebellion: the Protestant Reformation, the Enlightenment, and the enshrining of science and reason as society’s hegemonic authority; so it might seem natural now to call for a Scientific Reformation to repair the institutions of science that seem to have become corrupted.

The various suggestions for reform have indeed called for change in a number of ways: in how academic institutions evaluate the worth of their researchers; in how journals decide what to publish and what not to publish; in how the provision of research resources is decided; and so forth and so on. But such suggestions fail to get to the heart of the matter. The Protestant Reformation was seeking the repair of a single, centrally governed, institution. Contemporary science, however, comprises a whole collection of institutions and groups that interact with one another in ways that are not governed by any central authority.

The way “science” is talked and written about is highly misleading, since no single word can properly encompass all its facets or aspects. The greatest source of misunderstanding comes about because scientific knowledge and understanding do not generate themselves or speak for themselves; so in common discourse, “science” refers to what is said or written about scientific knowledge and theories by people — who are, like all human beings, unavoidably fallible, subject to a variety of innate ambitions and biases as well as external influences; and hindered and restricted by psychological and social factors — psychological factors like confirmation bias, which gets in the way of recognizing errors and gaps, social factors like Groupthink, which pressures individuals not to deviate from the beliefs and actions of any group to which they belong.

So whenever a claim about scientific knowledge or understanding is made, the first reaction that should be, “Who says so?”

It seems natural to presume that the researchers most closely related to a given topic would be the most qualified to explain and interpret it to others. But scientists are just as human and fallible as others, so researchers on any given subject are biased towards thinking they understand it properly even though they may be quite wrong about it.

A better reflection of what the facts actually are would be the view that has become more or less generally accepted within the community of specialist researchers, and thereby in the scientific community as a whole; in other words, what research monographs, review articles, and textbooks say — the “consensus”. Crucially, however, as already noted, any contemporary consensus may be wrong, in small ways or large or even entirely.

Almost invariably there are differences of opinion within the specialist and general scientific communities, particularly but not only about relatively new or recent studies. Unanimity is likely only over quite simple matters where the facts are entirely straightforward and readily confirmed; but such simple and obvious cases are rare indeed. Instead of unanimity, the history of science is a narrative of perpetual disagreements as well as (mostly but not always) their eventual resolution.

On any given issue, the consensus is not usually unanimous as to “what science says”. There are usually some contrarians, some mavericks among the experts and specialist researchers, some unorthodox views. Quite often, it turns out eventually that the consensus was flawed or even entirely wrong, and what earlier were minority views then become the majority consensus [5, 6].

That perfectly normal lack of unanimity, the common presence of dissenters from a “consensus” view, is very rarely noted in the popular media and remains hidden from the conventional wisdom of society as a whole — most unfortunately and dangerously, because it is hidden also from the general run of politicians and policymakers. As a result, laws on all sorts of issues, and many officially approved practices in medicine, may come to be based on a mistaken scientific consensus; or, as President Eisenhower put it [7], public policies might become captive to a scientific-technological elite, those who constitute and uphold the majority consensus.

The unequivocal lesson that modern societies have yet to learn is that any contemporary majority scientific consensus may be misleading. Only once that lesson has been learned will it then be noted that there exists no established safeguard to prevent public policies and actions being based on erroneous opinions. There exists no overarching Science Authority to whom dissenting experts could appeal in order to have the majority consensus subjected to reconsideration in light of evidence offered by the contrarian experts; no overarching Science Authority, and no independent, impartial, unbiased, adjudicators or mediators or interpreters to guide policymakers in what the actual science might indicate as the best direction.

That’s why the time is ripe to consider establishing a Science Court [8].

——————————————–

[1]     CRITIQUES OF CONTEMPORARY SCIENCE AND ACADEME 
WHAT’S WRONG WITH PRESENT-DAY MEDICINE

[2]    See especially, about theoretical physics, Sabine Hossenfelder,Lost in Math: How Beauty Leads Physics Astray, Basic Books, 2018

[3]    Stuart Ritchie, Science Fictions: How FRAUD, BIAS, NEGLIGENCE, and HYPE Undermine the Search for Truth, Metropolitan Books (Henry Holt & Company), 2020

[4]    A number of examples are discussed in Henry H. Bauer, Dogmatism  in Science and Medicine: How Dominant Theories Monopolize Research and Stifle the Search for Truth, McFarland, 2012

[5]    Bernard Barber, “Resistance by scientists to scientific discovery”, Science, 134 (1961) 596-602

[6]    Thomas S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press, 1970, 2nd (enlarged) ed. [1st ed. was 1962]

[7]    Dwight D. Eisenhower, Farewell speech, 17 January 1961; transcript at http://avalon.law.yale.edu/20th_century/eisenhower001.asp

[8]    Chapter 12 in Henry H. Bauer, Science Is Not What You Think: How It Has Changed, Why We Can’t Trust It, How It Can Be Fixed, McFarland, 2017

Posted in conflicts of interest, consensus, fraud in science, media flaws, medical practices, peer review, politics and science, resistance to discovery, science is not truth, science policy, scientific culture, scientists are human, unwarranted dogmatism in science | Tagged: , | 3 Comments »

Dilemmas for a skeptical scientist living in CoVID-19 USA

Posted by Henry Bauer on 2020/12/06

Anthony Fauci was and remains wrong about HIV/AIDS [1]. But everyone can be wrong about one thing and yet right about another; so might Fauci be essentially right about CoVID-19?

Robert Redfield, current director of the Centers for Disease Control & Prevention (CDC), was a member of the HIV Research Group that failed to follow up conundrums about “HIV tests” in the earliest days: the very conundrums that reveal the inadequacies of the accepted views about HIV. Nothing in Redfield’s record inspires confidence in his judgment, quite the contrary [2].

Moreover, even before Redfield, the CDC had failed miserably concerning CoVID-19 tests in the early days. How can I now trust any of the data and analyses issued by the CDC? It was their faulty, statistically incompetent, classification of the early AIDS sufferers that laid the basis for the mistaken view of an infectious disease [3]; and they ignored the HIV-test conundrums when they were pointed out to them [#514 in The Case against HIV ].

A large proportion of my colleagues in Rethinking AIDS [4] have extrapolated the lack of credibility of Fauci, CDC, et al. to conclude that CoVID-19 is not dangerously different from the normal influenza-like illnesses (ILI) of every global winter season. Certainly the age-dependent relationship of CoVID-19 mortality seems to be much like that of ILI mortality.

As against that, the number of deaths attributed to CoVID-19 in the USA is, by the end of 2020, significantly greater than the worst ILI season — according to CDC data, of course. Furthermore, comparison of the United States with other countries,  particularly Taiwan and Australia and New Zealand, seems to support the view that CoVID-19 is exceptionally contagious and that its spread can be greatly restricted by lockdowns, social distancing, and mask-wearing.

On the other hand,  HIV/AIDS-based understanding (as well as a priori reasoning) discredits RT/PCR-CoVID-19 testing as a reliable diagnosis of infection. And yet there does seem to be a strong correlation between reported positive CoVID-19 tests and observed morbidity and mortality. Perhaps indeed the DNA bits found or postulated to be characteristic of CoVID-19 do occur predominantly in individuals who have at some time been infected; some sources have suggested that the DNA or RNA sequences being looked for are fairly lengthy ones and thereby fairly specific to CoVID-19.

To resolve at all conclusively the differences between the official view and the dissident ones, far better data are needed than are presently available. Instead of numbers, one needs to know how those vary by age, by co-morbidities, by diagnoses of actual causes of morbidity and ultimate mortality; together with truly comparable data for ILI. Those data and comparisons are unlikely to be available until far in the future, when historians of medicine do the sort of retrospective investigative work that Michelle Cochrane did for AIDS patients [5].

So what to believe? Who to believe?

Official sources discredited themselves over HIV/AIDS and have not apparently learned from that; HIV=AIDS has never been disavowed, and that mistaken belief and invalid tests continue to bring unnecessary and toxic “treatment” to innumerable individuals.

That officialdom has become widely discredited, including official science and medical science In general, is illustrated by the public hand-wringing by many officials and commentators about the public lack of confidence in vaccines that is expected to interfere with widespread uptake of CoVID-19 vaccination.

The loss of credibility by official sources  has been well earned. A selective bibliography [6] of critiques of contemporary science by scientists and researchers and science writers and other commentators lists dozens of books as well as many articles, as well as a couple of specialist journals concerned solely with breaches of ethics and accountability in science. A companion bibliography [7] lists books, articles, and reports describing the failings of contemporary medicine and medical science.

As to vaccines, the case of HPV vaccines (Gardasil, Cervarix) demonstrates that not only can unproven and even unsafe vaccines be officially approved by the Food and Drug Administration for marketing, they can also then be vigorously promoted by the CDC [8].

In the absence of credible official authorities or sources, What to believe? Who to believe?

Needed reforms are suggested in many of the critical works [7,8], but no significant actions have followed those suggestions.

————————————————

[1]    That HIV does not cause AIDS can be convincingly demonstrated to anyone who is willing to look at the actual facts available in the official literature including peer-reviewed journals collated in the bibliography at The Case against HIV; included are a couple of dozen books analyzing the data.
    My own book (#5 in The Case against HIV) came about because I followed up a statement clearly incompatible with the official view, searching the records of about two decades of reported HIV tests and finding that the results of those tests show that what the tests detect is not an infectious agent; see also my narrative of that emotionally stressful research (#514 in The Case against HIV).

 [2]   Laurie Garrett, “Meet Trump’s new, homophobic public health quack”, 23 March 2018;
     Laurie Garrett, “Why Trump’s new CDC director is an abysmal choice”, 13 May 2018;
    Kristen Holmes, Nick Valencia & Curt Devine (CNN), “CDC woes bring Director Redfield’s troubled past as an AIDS researcher to light”, 5 June 2020;
    Tim Murphy, “Robert Redfield’s epic COVID failure is not a surprise to many HIV and public health experts”, 28 September 2020

[3]    John Lauritsen, chapter 1 in The AIDS War: Propaganda, Profiteering and Genocide from the Medical-Industrial Complex, ASKLEPIOS, 1993

[4]     Established to promote understanding that HIV does not cause AIDS, http://www.virusmyth.com/aids. Up-to-date website is https://rethinkingaids.com

[5]    Michelle Cochrane, When AIDS Began: San Francisco and the Making of an Epidemic, Routledge, 2004

[6]    CRITIQUES OF CONTEMPORARY SCIENCE AND ACADEME

[7]    WHAT’S WRONG WITH PRESENT-DAY MEDICINE

[8]    Sacrificial Virgins  (a documentary);
    Mary Holland & Kim Mack Rosenberg, The HPV Vaccine On Trial: Seeking Justice For A Generation Betrayed, Skyhorse, 2018
    HPV vaccines: risks exceed benefits; HPV vaccination: a thalidomide-type scandal;   
    HPV does not cause cervical cancer; HPV, Cochrane review, and the meaning of “cause”

Posted in media flaws, medical practices, science policy, scientists are human, unwarranted dogmatism in science | Tagged: , , , | 9 Comments »

 
%d bloggers like this: